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Abstract—With the rapid growth of data transmission and
sharing technology, image encryption is becoming a widely
discussed topic in the field of information security. In this
paper, Particle Swarm Optimization (PSO) algorithm with Chaos
Logistic Map is applied to create an encryption algorithm.
The proposed algorithm benefits from PSO’s ability to be able
to quickly search a large space, having a short computation
time, and having a higher probability of finding the global
optimum, and thus PSO produces a very good encryption image.
Furthermore, the use of logistic map for confusion and diffusion
operations is very beneficial. The algorithm starts by creating
several encrypted images, which are the particles for PSO, and
the logistics maps and the encryption key used is based on
the plain image only. The optimization step is measuring the
pixels correlation, where lower correlation values are better, and
these serve as the fitness function. The simulation results of
the proposed algorithm indicate an effective encryption process.
In addition, the security analysis illustrates the ability of this
algorithm to provide satisfying levels of security in comparison
with other image encryption schemes.

Index Terms—Image Encryption, Particle Swarm Optimiza-
tion, PSO, Chaos Logistic Map

I. INTRODUCTION

Nowadays the internet is used all over the world for different
communication types and interactions with different goals. It
could be family call, educational session, work meeting or
even a secret military conference. In special circumstances
people live in, like the covid 19 pandemic, it has become
mandatory for people to meet over the internet. Unfortunately,
this type of media is not safe and there are a lot of expert
hackers or attackers trying to access the data for different
purposes. Images is one type of data that is used to be shared,
and these images my involve personal privacy information,
sensitive trading data, military secrets and national security
secrets. Protecting image information over the network or
internet focuses on 3 main goals for security [1]:

o Confidentiality: Image data is not accessible for unau-
thorized users.

o Integrity: Protection of image data from unauthorized
modifications.

o Availability: An image is available when its needed by
an authorized user.

Compared to text data, digital images’ characteristics are
different since those have the following features: large amount
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of data, strong correlations, big data redundancy, storage for-
mat, etc. make the traditional encryption methods, such as Data
Encryption Standard (DES), International Data Encryption
(IDEA), and Advanced Encryption Standard (AES) are not
so suitable for image encryption. These algorithms can not
prevent statistical, differential and other attacks, and easily
fail.

Every image encryption system is mainly composed of two
parts: 1) secret key, and 2) encryption algorithm. According
to the basic principle of cryptology, a cryptosystem should
be sensitive to the secret key. One way to accomplish this
requirement is the usage of a truly random key generation
mechanism. In other words, based on secret keys, pseudo-
random sequences are produced for the encryption of the im-
age. The pseudo-random key stream is then used to mask and
encrypt each plain-image pixel sequentially in the encryption
algorithm.

Therefore, a variety of image encryption schemes have been
proposed to achieve the goal of secure image transfer [1]
such as Block based using substitution [2] or permutation [3],
Bit Transform using Arnold [4] or Angular [5], Conventional
based such as AES [6], DES [7] or RC5 [8], Chaos based
algorithm such as Map [9], one dimensional Chaos [10] or
Hyper Chaos [11], including miscellaneous based like DNA
sequence [12], genetic algorithm [13], Double phase Random
Encoding [14]. These algorithms listed are used in image
encryption.

This paper organized as follow, related work is presented
first, then the proposed approach used in this paper is in-
troduced, followed by definition of the quality metrics used
to evaluate proposed approach. The experiments, results, and
conclusion complete the paper.

II. RELATED WORK

In [2], a novel variant of Substitution-Box is used to encrypt
the images. The main contribution was a novel and simple
modular approach to construct nonlinear S-boxes, and dynamic
permutation operation is applied to the values of S-box to
create more confusion. For S-box having size n x n, the novel
transformation function is represented as: L(z) = [A x z +
B]|MOD (2" +1) z € N, where N = {0,1,2...255},0 =
{1,3,5,...255},A€ O and B € N.



Each S-box method needs to find the Multiplicative Inverses
(MI) for each value in the box. In this paper, a simpler ap-
proach is used to find the MI. Instead of using the Galois field,
which is considered a complicated process. This approach
is represented by MI(L(z)) = L(z) MOD (2" + 1). MI is
used in the permutation process to make it dynamic with a
large search space, i.e., for a S-box of size 8 x &, the total
number of permutations is 2'6!. An experiment is conducted
to evaluate different statistical performance measures such as
histogram analysis, difference analysis, and similarity analysis
using benchmark images. The results are compared with other
research work and it was found that this algorithm can improve
image encryption using the S-box process.

In [10], a hyper algorithm based on Genetic algorithm and
DNA sequence is used in image encryption. A DNA sequence
is selected as it offers greater storage and higher computing
capabilities. The encryption method consists of two phases: a
Transposition or Scrambling phase and a Substitution phase. In
the first phase, pixel locations are altered using GA to reduce
the correlation among adjacent pixels. In the substitution
phase, the pixels are replaced by using an XOR operation
between the pixel values converted into binary strings, and
DNA substrings are derived from a random DNA string. DNA
substrings are used as keys for the image encryption. The
experimental result confirms that the algorithm is simple, fast,
and feasible. The performance analysis outlined the robustness
of the algorithm against all kinds of attacks and thereby
maintaining higher security.

In [15], a modern framework is presented using the neigh-
borhood nonlinear map within the Coupled Map Lattices
(CML). The approach was connected to the instrument of
permutation-diffusion. The encryption scheme chaos consid-
ered that the merits of spatio-temporal chaos and the Nonlinear
Chaotic Algorithm (NCA) is a great method that produces
eccentric chaotic sequences.

In [16], an effective scheme for image encryption is pre-
sented that is dependent on the settled nested chaotic map and
Deoxyribonucleic Acid (DNA) utilizing the Secure Hash Al-
gorithm (SHA-256) to produce the initial states of the chaotic
attractor, and introduced a new chaotic system dependent on
Julia’s fractal procedure, tumultuous attractors, and logistic
map in a complex set.

In [17], a new form of PSO has been developed using
chaotic maps (tent map and logistic map) and Gaussian
mutation. PSO’s shortcomings are that it can get easily stuck
in local optima and can also lead to early convergence during
the search process. To address these issues the chaotic map
is employed to initialize uniform distributed particles so as
to improve the quality of the initial population, which is a
simple yet very efficient method to improve the quality of
the initial population. Furthermore, the Gaussian mutation
mechanism based on the maximal focus distance is imple-
mented to help the algorithm escape from the local optima
and make the particles proceed with searching in other regions
of the solution space until the global optimal or the closer
to optimal solutions can be found. Experimental results on

two benchmark functions demonstrate the effectiveness and
efficiency of the PSO algorithm.

In [18], PSO and five popular chaotic maps: logistic, singer,
sinusoidal, tent, and Zaslavskii have been integrated to build
effective docking applications. These programs are routinely
used in structure-based drug design to find the optimal binding
pose of a ligand in the protein’s active site. These programs are
also used to identify potential drug candidates by ranking large
sets of compounds. Pose prediction experiments indicate that
chaos-embedded algorithms outperform docking algorithms in
ligand pose root mean square deviation, success rate, and run
time. In virtual screening experiments, the proposed system
achieved a very significant five to sixfold speedup with com-
parable screening performances compared to AutoDock Vina
in terms of area under the receiver operating characteristic
curve and the enrichment factor.

In this paper, PSO is used with logistic map to create an
image encryption method. This approach is used because PSO
by default is fast, robust, and has a short computation time.
However, the canonical PSO can get trapped in a local mini-
mum and for this reason Logistic map is used. Furthermore,
Logistic map provides a higher level of ambiguity in the
encryption process, which makes the algorithm strong against
any attacks.

III. OUR APPROACH

This approach we are integrating Chaotic Logistic Map
within PSO to implement an encryption algorithm. Chaos
theory [19] in math is “the study of apparently random or
unpredictable behavior in systems governed by deterministic
laws. A more accurate term, deterministic chaos, suggests
a paradox because it connects two notions that are familiar
and commonly regarded as incompatible” these notions are
randomness and deterministic behavior. However, the random-
ness of chaotic complex systems are governed by underlying
patterns and deterministic laws, and thus, there is intercon-
nectedness, constant feedback loops, repetition, self-similarity,
fractals, and self-organization. The most common element in
chaos systems is a very high degree of sensitivity to initial
conditions and to the way in which they are set in motion.

In general, chaos-based image encryption algorithms consist
of two steps: pixel permutation and pixel diffusion. Pixel
permutation changes the pixel position, while pixel diffusion
alters the pixel values where a change in a pixel will spread
almost to other pixels of entire image. Contributed by the
sensitivity properties of chaotic system, chaos-based image
encryption algorithms generally achieve good performance in
terms of security.

Logistic map [20] is one polynomial mapping of degree 2
popularized and published by biologist Robert May in 1976
as a discrete-time demographic model. This map is expressed
by Equation (1):

Xn+1 = TXn(l - Xn) (D
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Fig. 1: Logistic Map Behavior

where X, is the ratio of the existing population and the
maximum possible population, it can be vary between 0 and
1, and 7 is the values of interest with values between O and 4.

The Logistic map behavior [21] is regardless of the initial
population X and can be determined depending on the 7 value.
The behavior can be summarized as follow:

o 7 value less than 1.0, the population will end to zero.

« 7 value between 1.0 and 2.0, the population will stabilize
on a fixed value after few iteration.

« 7 value between 2.0 and 3.0, the population will stabilize
on fixed value after fluctuates in first few iteration.

o 7 value between 3.0 and 3.45, the population will fluctu-
ate around 2.

e 7 value between 3.45 and 3.54, the population will
fluctuate around 4.

« 7 value between 3.54 and 4.0, the population will exhibit
chaotic behavior.

Figure 1 shows the behavior for logistic map for 100
iteration using a different value of r regardless of the initial
population value.

PSO [22] is a computational method that is used for
optimization. It iteratively improves a candidate solution by
improving the fitness function value. It is based on a pop-
ulation of candidate solutions that are called particles, and
these particles keep moving in the search space and update
the velocity and position values (both are randomly initialized
at the beginning) by using the PSO equations. Equation (2)
describes the velocity update:

vi(t+1) =w x v;(t) + 1 X up x (Pbest;(t) — X;(t))+
Co X Ug X (Gbesti(t) — Xi<t))
2)

and Equation (3) describes the position update:

Xi(t+1) = X;(t) +vi(t + 1) 3)

All particles move with the guide of the global best position
that is shared between the swarm members after each iteration.
The global best is also updated by comparing the value with all
particles positions’ value and taking the best particle position
in each iteration if it is better than the old global best.

Our approach starts with the initialization phase, as given
in Algorithm 1 reading the image and then based on the
population size the same number of encrypted images will be
generated. These encrypted images are the particles in PSO.
Each particle position and velocity are dependent on random
initialization, and this number value is less than the image
pixels number. In addition to the particle position and velocity,
the image coefficient correlation is measured and that value
is used to define the particle best position. The definition of
the Correlation coefficient and its calculation are described
in the simulation experiment section. After all particles are
created, the particles’ best positions and the swarm global best
is updated.

Algorithm 1: Initialization

Input : Plain Image
Output: Encrypted Image
1 Read image (I) of size (M x N)
2 Read population size (P)
3 for p in P do
4 X = random number < (M x N)
5 key = GenerateKey(X, I)
6 eimage = Encrypt(image, key)
7 velocity(p) = | X/M |
8 position(p) = X
9 p_best_pos = X
10 p_b_ccf = CorrCoef(p)
11 if g_best > p_b_ccf then

12 g_best =p_b_ccf

13 g_best_pos = p_best_pos
14 end

15 end

The initialization phase uses two methods, which are key
generation and the encryption method. The Generate keys
method, as outlined in Algorithm 2, the objective is to return
the encryption key of size 40 bits that is used in the encryption
process based on the plain image and a random value only.
Using a random number from the input parameter, the method
will figure out the row and column of the first pixel, then it will
read diagonally four additional pixels, convert each pixel value
to a binary value, concatenate all binary values and finally
return it as the encryption key. For each particle, this random
number has to be saved since it is the only key required for
the decryption process.



Algorithm 2: Generate Key

Input : Number X
Image I (Size (M x N)
Output: Key

17’:L%J
2¢c=N mod X
3 key =

concatenate(binary(I(r,c)), binary(I(r +1,c+1)) to
binary(I(r+4,c+4)))
4 return key

The encryption process as given in Algorithm 3 uses the
logistic map equation. As described earlier, for this equation
the initial population X,, and the increasing rate r are prede-
fined. The encryption key used to calculate X value is given
in Equation (4).

_ key[1] x 2% + key[2] x 2°° + .. + key[40] x 2°
- 240

Xo “)

The r value used is from where the logistic map behaves
chaotically. After that loop is completed, each pixel of the
image is XOR with (X x 256), and the result is an encrypted
image that is returned to the initialization phase as a particle.

Algorithm 3: Encryption Process

Input : Key key
Image img (M x N)
Output: Encrypted Image eimge
1 Xy (calculated as Equation (4) using key)

2 fori=1to M do

3 for j =11t N do

4 | eimg(i, j) = [(Xo x 256) ® img(i, J)]
5 end

6 end

7 return eimg

The last step in this approach is to optimize the solution
using PSO, that means finding the lowest value of coefficient
correlation of the image. For this in each iteration, the particle
velocity and position are updated using Equations (2), (3), and
the coefficient correlation value is calculated. The calculation
process for the coefficient correlation uses the index value
of the particle as a random number, particles as image, then
generates the keys, encrypt images, and finally calculates the
correlation coefficient value. After that update, the particle’s
best position and swarm global best position is modified. This
process continues with the next iteration. At the end, an image
with best global position as an encrypted image is returned.

The decryption process is the opposite of encryption pro-
cess. It uses the random number selected during the encryption
process and the chaotic function logistic map with the same r
values.

IV. SIMULATION EXPERIMENTS

To test this approach, the algorithm was implemented in
python and uses different measures to show the strength of
the proposed algorithm. It is tested using eight benchmark im-
ages: Lena, Peppers, Baboon, Barbara, Gold Hill, Cameraman,
Fruits, and Sail Boat. All the tests are applied to grayscale
images of size 512 x 512. This algorithm can be applied to
color images using RGB color analysis instead of only one
color.

A. Correlation Coefficient

As in [23], the Pearson correlation coefficient (CCF) is
a statistical metric to measure the strength and direction of
the linear relationship between any two random variables. It
has been used in many different fields such as classification,
clustering, finance analysis, and in biological research. In this
paper, our approach uses CCF as the fitness function of PSO,
i.e., it aims to receive an image with a very low correlation
coefficient value (close to 0).

In a plain image, an unencrypted one, any adjoining pixels
have very high correlation. For an encrypted image we want to
have at best no correlation so that it is save to transfer image
information and data and prevent any statistical attacks. CCF
is the covariance of two variables, divided by the product of
their standard deviations; thus, it is essentially a normalized
measurement of the covariance such that the result always has
a value between —1 and 1. The CCF values close to 1 and
-1 mean high correlation, while a value close to 0 means no
correlation at all. CCF is calculated as given in Equation (5):

NYEX (@ixy) =N 2 x 2 ys
VISR, 22 — (SN, 202) x (NN, 92 - (ZX, v
where N is the total number of pixels,  and y are any
adjacent pixel values.

Table I shows the correlation value and compares it with re-
sults from different papers using different techniques. In most
of the cases, thr proposed approach shows higher performance
in ‘destroying’ the correlation. For example in the Lena image,
the value was 9.5 x 10~8 whereas in [24] it was 6.8 x 1076
and this was the nearest value. The Peppers image is another
example with a CCF value of 6.1 x 107, while in [25] it
was only 5.2 x 1072, The Gold Hill image though, as given
in [24], has a better value than using our approach, however
the difference is small (the value is 2.93 x 10~° while our is
3.00 x 1079).

CCF =

TABLE I: Pearson Correlation Coefficient

Image Ours | Ref. [25] | Ref. [24] Ref. [2]
Lena 9.46E-08 | 4.83E-05 | 6.82E-06 NA
Peppers 6.11E-06 | 5.25E-05 | 2.46E-04 | 3.00E-04
Baboon 2.96E-06 | 5.15E-04 NA NA
Barbara 1.65E-05 | 2.18E-04 | 2.26E-04 | 1.30E-03
Gold Hill 3.00E-05 NA | 2.93E-05 | 2.00E-04
Cameraman | 2.48E-05 NA NA NA
Fruits 1.69E-05 NA NA NA
Sail Boat 1.03E-05 | 5.15E-05 | 1.44E-06 NA
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Fig. 2: Lena Image and Encrypted Image with Histogram and Coefficient Correlation
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Fig. 3: Barbara Image and Encrypted Image with Histogram and Coefficient Correlation

While Table I shows the pixel correlation with all adjacent
pixel, Table II shows more specific information. It displays
the result of pixel correlation with vertical adjacent pixels
alone, horizontal adjacent pixels, and diagonal adjacent pixels
separately. For example, the Lena image after encryption has
0.0010 vertical correlation, 0.0002 horizontal correlation and
0.0006 diagonal correlation, while the values reported in [26]
are -0.0400, 0.0005 and 0.0030. Another example is the Fruits
image with values 0.008, 0.004 and 0.002 while in [28]
the values are -0.0155, -0.0129 and 0.0012. Most result of
the proposed algorithm are better than the other compared
approaches except the horizontal correlation for the camera
man image. Figures 2-5 visualize the vertical, horizontal, and
diagonal correlation coefficient for Lena, Barbara, Camera
man, and Sail Boat in image (c), (d) and (e) before the
encryption process, and a clear relation can be seen in all
images. Images (h), (i), and (j) show the correlation after
the encryption process. From these images its clear that the
correlation values are small.

With these results of the correlation coefficient, the proposed
PSO with logistic map approach proves that the security in
image encryption can be improved and thus almost all the
relation between the image pixels are destroyed.

TABLE II: Vertical, Horizontal & Diagonal Correlation

Ours Reference [26]
Image V-Corr | H-Coor | D-Corr| V-Corr | H-Coor | D-Corr
Lena 0.001142 | 0.000224 | 0.000570 | -0.03911 | 0.00047 | 0.00305
Peppers 0.002927 | 0.001750 | 0.002813 | 0.04321 | 0.00198 | 0.02547
Baboon 0.002717 | 0.002981 | 0.000898 | 0.00285 | 0.00318 | -0.00294
Barbara 0.001748 | 0.001806 | 0.000497 NA NA NA
Gold Hill 0.008919 | 0.000788 | 0.004296 NA NA NA
Cameraman | 0.001219 | 0.006339 | 0.000803 | 0.0019 | 0.00212 | -0.00205
Fruits 0.007627 | 0.004159 | 0.002185 NA NA NA
Sail Boat 0.000966 | 0.009781 | 0.007364 NA NA NA

B. Histogram Analysis

An image histogram [29] is a graphical representation of
the color distribution for an image. Color is defined by using
three primary ways:

o Hue: refers to the color only.

o Saturation: is the intensity or purity of a hue.

« Lightness: is the relative degree of black or white mixed

with a given hue.

In this paper, grayscale images are used and thus the
gray histogram analysis tested which is the statistical number
of each different gray level ranging between 0 to 255 of
all picture pixels. This measures the level of gray color in
the image before and after the encryption and will plot the
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Fig. 4: Sail Boat Images and Encrypted Image with Histogram and Coefficient Correlation
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Fig. 5: Gold Hill Images and Encrypted Image with Histogram and Coefficient Correlation

histogram for each. The distribution of pixels is an indicator of
the image content. A perfectly encrypted image has random-
noise and the image tends to ideally have a flat or uniform
distribution of pixels. Figures 2-5 subfigure (a) shows the
original image, (b) shows the original image histogram, (f)
shows the image after encryption, and (g) shows the histogram
of the encrypted images.

It is clear that each plain image has a histogram that has
several peaks and normal distribution of gray level. How-
ever, the corresponding encrypted images are quite noisy and
meaningless to a casual observer, thus, illustrating the indis-
tinguishability of an encrypted image. Moreover, an effective
encryption effect can also be confirmed by analyzing the
histogram plots as shown in subfigure (b). The histograms
of encrypted images depict that the distribution of pixels in
each encrypted images is more flat than their plain images
histograms as well as substantially better than the histograms
of the encrypted images obtained in [24].

C. Image Entropy

Shannon entropy [30] was introduced in 1948 by Claude
Shannon in his paper “A Mathematical Theory of Communi-
cation”. Since then, Shannon entropy has been widely used in
the information sciences. Shannon entropy is a measure of the
uncertainty associated with a random variable. Specifically,

the Shannon entropy quantifies the expected value of the
information contained in a message. In image encryption it
processes the level of gray in image, as represented in a
histogram, is the information of the message needed to be
encrypted. In the original image the entropy value represents
the amount of data to be encrypted to make the image highly
random, while in the encryption image the value represents
the amount of data need to decrypted the image in order to
obtain a meaningful one. the maximum value of entropy is 8
since l0g2256 = 8. Entropy for image X can be calculated
using Equation (6):

L
E(X) = 7 Log2
=1

ny
T (6)

where L is the gray scale from 0 to 255, T' is the number
of pixels, and n; is the [-th pixel value.

By looking at Table III, our proposed approach returns
very high entropy values, even when compared to the original
image. For example, the plain Lena image has an entropy
value of 7.4455, Barbara’s is 7.6278, Peppers’ is 7.5982, and
the Gold Hill image is 7.4778. Most of the entropy values
of encrypted images have a value greater than 7.9990, which
is very high value since the ideal value is 8. Comparing to



TABLE III: Entropy

Image Ours | Ref. [25] | Ref. [26] | Ref. [24] | Ref. [2] | Ref. [27]
Lena 7.99982 | 7.99746 | 7.99930| 7.97200 NA | 7.90230
Peppers 7.99943 | 7.99423 | 7.99940| 7.979707.57140 | 7.90240
Baboon 7.99982 | 7.99664 | 7.99930 NA NA NA
Barbara 7.99936 | 7.99775 NA | 7.98520 | 7.63210 NA
Gold Hill 7.97502 NA NA | 7.97910 | 7.48020 NA
Cameraman | 7.99739 NA | 7.99910 NA NA NA
Fruits 7.99928 NA NA NA NA NA
Sail Boat 7.99921 | 7.99472 NA | 7.97890 NA | 7.90190

other related research papers, their results are also very good,
however, our approach has a better performance for almost for
all of the images except for the Camera man image where the
value in [26] was reported to be 7.999 and for our approach it
is 7.997. These results indicate that this approach is efficient
enough raising the randomness in the encrypted images and
has strength to resist entropy based attacks.

D. Differential Analysis

Differential attack is a branch of study in cryptography
that compares the way differences in the input relate to the
differences in the encrypted output. The prime objective of
this analysis is to study block ciphers to verify if changes in
the plaintext result in any non-random results in the encrypted
ciphertext. The importance of random change in ciphertext, if
changed in plain text, indicates the strength in the encryption
scheme. This high randomness level prevents any unauthorized
access to the data from gaining information about what was
encrypted or how it was encrypted by monitoring data changes.

As for text encryption, the same analysis can be applied to
image encryption in order to evaluate an algorithm’s strength
and weakness. Further detail about this in [31]. The following
analysis was conducted for the proposed approach.

1) Number of Changing Pixel Rate (NPCR): NPCR is to
quantify the number of pixel changes between two encrypted
images for the same plain image with single pixel change
before the second encryption. This process is used to evaluate
the effect of change in results of the encrypted image. Assume
C' and C? are the encryption results for the same image while
C? encryption process is started after the single pixel change
in the original image. NPCR is calculated by constructing a
two dimensional array of the image pixel size. Each element
value in the array is either O or 1, and it is based on whether
the pixel value in C! and C? are equal or not. This can be
represented mathematically as shown in Equation (7):

o]0, QC(G,4) = C?(i, )
D(”)_{L QCL (i, j) # C2(i,j) 7

Then, Equation (8) is used to calculate the NPCR value
where T represents the total number of pixels:

®)

Table IV shows the result of the NPCR value of eight images
and compares other related research approach results. Seven

NPCR = Z% % 100

image NPCR values where above 99.5% and the last one,
Baboon, was 99.22%. These results show that our algorithm
is highly random and leads to a large change in the result with
a value of greater than 99%. Furthermore, our algorithm shows
high performance compared to other work, in most of the test
images while in some cases like the Lena image the result was
99.54% whereas in [26] a value of 99.66% is reported.

TABLE IV: NPCR

Image Ours | Ref. [25] | Ref. [26] | Ref. [24]
Lena 99.542 99.645 99.664 99.228
Peppers 99.634 99.614 99.629 99.167
Baboon 99.221 99.583 99.644 NA
Barbara 99.609 99.272 NA 99.253
Gold Hill 99.594 NA NA 99.237
Cameraman | 99.660 NA 99.652 NA
Fruits 99.611 NA NA NA
Sail Boat 99.583 99.558 NA 99.191

This is where authors provide additional information about
the data, including whatever notes are needed.

2) Unified Averaged Changed Intensity (UACI): UACI
is a value that determines the average intensity of differences
regarding the plain and cipher images. It is calculated by the
summation of the differences in the pixels between C! and C?.
Then, this value is divided by the multiplication of the total
number of pixels (7') and the largest supported pixel value (F')
which is 255. Equation (9) represents the calculation of UACI.

G (i,4) — C%(i, j)|

UACI = T ©)

Table V presents the results of the UACI values achieved by

our approach. Most values achieved are greater than 33.4%,

which implies a High sensitivity encryption algorithm. The

Fruits image is an exception where its value was around 32%.

Comparing these results with other related approaches shows

that our algorithm is stronger in creating uncertainty in the
encrypted images in most cases.

x 100

TABLE V: UACI

Image Ours | Ref. [25] | Ref. [26] | Ref. [24] | Ref. [2] | Ref. [27]
Lena 33.454 33.561 33.612 30.147 NA 33.460
Peppers 33.848 33.587 33.601 30.667 | 33.840 33.430
Baboon 33.637 33.611 33.643 NA NA NA
Barbara 33.748 33.554 NA 30.972 | 33.200 NA
Gold Hill 33.705 NA NA 30.485| 33.130 NA
Cameraman | 33.658 NA 33.643 NA NA NA
Fruits 32.231 NA NA NA NA NA
Sail Boat 33.633 33.483 NA 31.159 NA 33.470

V. CONCLUSION

This paper presents a new algorithm for image encryption.
The algorithm utilizes the power of PSO in solving opti-
mization problems, and benefits from logistic map chaotic
behavior to increase the security level. The algorithm’s main
idea is to find the lowest pixel correlation. It has been
implemented in python and tested using eight benchmark
images. The encrypted images were evaluated using different
performance measures such as pixel coefficient correlation,



histogram analysis, entropy analysis, pixel changing rate, and
unified averaged changed intensity. The results demonstrate
our algorithm’s efficacy in comparison to other recent image
encryption approaches. Moreover, the proposed encryption ap-
proach demonstrates better performance and higher resistance
against analytical attacks in comparison to other works. Hence,
the good performance of our encryption approach in terms
of CCF, pixels distributions, entropy, differential analysis is
endorsed by the simulation outcomes and analyses.
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