
Scaling Genetic Programming for Data
Classification using MapReduce Methodology

Nailah Al-Madi and Simone A. Ludwig
Department of Computer Science

North Dakota State University
Fargo, ND, USA

{nailah.almadi,simone.ludwig}@ndsu.edu

Abstract—Genetic Programming (GP) is an optimization
method that has proved to achieve good results. It solves problems
by generating programs and applying natural operations on these
programs until a good solution is found. GP has been used to solve
many classifications problems, however, its drawback is the long
execution time. When GP is applied on the classification task,
the execution time proportionally increases with the dataset size.
Therefore, to manage the long execution time, the GP algorithm
is parallelized in order to speed up the classification process.
Our GP is implemented based on the MapReduce methodology
(abbreviated as MRGP), in order to benefit from the MapReduce
concept in terms of fault tolerance, load balancing, and data
locality. MRGP does not only accelerate the execution time of
GP for large datasets, it also provides the ability to use large
population sizes, thus finding the best result in fewer numbers of
generations. MRGP is evaluated using different population sizes
ranging from 1,000 to 100,000 measuring the accuracy, scalability,
and speedup.

Keywords—Evolutionary computation, genetic programming,
data classification, Parallel Processing, MapReduce, Hadoop

I. INTRODUCTION

Optimization is the process of finding the best solution from
all feasible solutions. One way to solve optimization problems
is through evolutionary computation algorithms, which are
inspired by the processes of biological evolution. Evolutionary
algorithms start by creating a population of solutions and
apply natural operations to the individuals in order to produce
a new population. This iterative process continues until a
good solution is found or a predefined number of generations
is reached. Natural operations include the selection process
which implies the survival of the fittest concept; the best
candidates are chosen to undergo recombination and mutation.
Selecting two candidates and recombining them, results in one
or more new candidates; whereas mutation is only applied to
one candidate and results in one new candidate. The fitness of
the individuals is calculated using a fitness measure which is
based on the problem to be solved.

Genetic Programming (GP) [18] is one of the evolutionary
computation algorithms that proved its effectiveness since it
automatically solves problems without requiring the user to
know or specify the form or structure of the solution in
advance. GP provides solutions to problems by creating com-
puter programs. The same process of evolutionary algorithms

is adopted by GP whereas the individuals are computer pro-
grams, and the crossover and mutation processes are applied to
these programs to exchange or modify parts of the programs.

Classification is one of the important data analysis tasks,
which is used to find a model from previous data in order to
predict the class of new data. Classification model effective-
ness is measured by calculating the accuracy outlining how
accurate the model can predict a new data class. GP can be
used to solve classification problems and produce a classifica-
tion model. This classification model is a computer program
that takes unseen data values and predicts the class label. The
goal of GP as an optimization process is to maximize the
number of correctly classified records (accuracy).

GP proved its effectiveness in many classification problems
[1, 2, 3], however, it suffers from the long run time since it is
an iterative process (large number of generations are needed
to find a good solution), in addition to the grammar used to
define chromosome representations, and the consequent large
search space. Moreover, the execution time of GP to build the
classification model depends on the size of the dataset, large
datasets require long execution time. Moreover, as mentioned
in [4], many typical GP problems do not have large sets of
fitness cases for two reasons: first, evaluation has always been
considered computationally expensive, and secondly, it is very
difficult to evolve solutions to harder problems. For all these
reasons, the acceleration of the GP process is needed, which
can be achieved by the parallelization of the GP process.

All nature-inspired algorithms are intrinsically parallel and
distributed. Three main factors allow to easily parallelize
Evolutionary Computation (EC) algorithms [5]: 1) Individual
programs are evaluated using multiple independent fitness
cases; 2) Populations consist of individuals which could be
evaluated on independent hardware in parallel; 3) Independent
runs can be executed simultaneously on different hardware.

Based on these factors three parallelization strategies (lev-
els) can be implemented for EC algorithms:

• Fitness evaluation level: individuals are distributed among
other nodes to compute the fitness values of the individ-
uals. Based on the fact that evaluating a fitness function
for every individual is the most costly operation of the
algorithms.

• Population level: divides the population into several sub-



populations then executes each sub-population.
• Individual level: each individual is placed on a grid

and all algorithm operations are performed in parallel,
evaluating simultaneously the fitness and applying local
selection and algorithm-specific operations to a small
neighboring group.

Algorithm parallelism can be done using different method-
ologies like Message Passing Interface (MPI) [6], or MapRe-
duce [7] and many others. MapReduce is a prominent parallel
data processing tool which has been gaining significant interest
from both industry and academia. It is a new methodology
proposed by Google in 2004, which is a programming model
and an associated implementation for processing large data
sets [7]. MapReduce enables users to easily develop large-scale
distributed applications by supporting fault tolerance, load
balancing, and data locality. In MapReduce, the user expresses
the computation as two functions: Map and Reduce where the
inputs and outputs are represented as a set of key/value pairs.
Map takes an input pair and produces a set of intermediate
key/value pairs. The MapReduce framework then groups all
intermediate values associated with the same key and passes
them to the Reduce function. The Reduce function accepts an
intermediate key and a set of values for that key, and merges
these values together to form a possibly smaller set of values.
The intermediate values are supplied to the user’s Reduce
function via an iterator. This allows the model to handle lists
of values that are too large to fit in main memory.

This MapReduce model is used for many evolutionary
computation algorithms such as Genetic Algorithms (GA)
[8, 9], Particle Swarm Optimization (PSO) [10], Ant Colony
Optimization (ACO) [11] and many others, which emphasize
its effectiveness and efficiency to be used for big data cal-
culations. To our knowledge, GP was not implemented using
the MapReduce model until now. In this paper, we parallelize
the GP process using MapReduce methodology (MRGP) in
order to accelerate the execution time of GP, by using large
population sizes, hence, less number of generations may be
needed to find good results. The main contributions of this
paper are the following: it demonstrates the transformation
of GP into the Map and Reduce primitives, and confirms its
ability to use large population sizes in order to find a good
solution in shorter execution times (tackling GP’s drawback
of long execution time), and supports the scalability property
to solve large problem sizes such as used for the classification
of big data.

The organization of this paper is as follows: Section II
presents some related works. In Section III, we describe the GP
process and MapReduce model, and introduce the proposed
MRGP approach. Then, we report on our experiments, and
show the results in Section IV. We conclude this paper in
Section V.

II. RELATED WORK

GP has been used for many problems, such as classification,
regression, and many other optimization problems. All of them
were implemented as sequential versions, and based on our

knowledge, GP was parallelized only using two approaches:
Graphics Processing Unit (GPU) [12], and OpenCL [13].
In [12], the authors used GPUs to accelerate the GP by
running the GP program on several GPUs in parallel, thereby
demonstrating the benefit of GPUs to accelerate the GP
approach. The authors showed that it is possible to get speed
increases of several hundred times compared to a typical CPU
implementation. In [13] the authors presented a detailed high-
performance GP implementation in OpenCL for accelerated
tree evaluation on the CPU and GPU architectures. OpenCl is
an open standard [14] for uniform and portable parallel pro-
gramming across heterogeneous computing platforms. They
concluded that GPU is considerably faster and more power
efficient than CPU.

Since GA is the closest EC algorithm to GP, therefore, we
will review some parallel GA approaches first. Different paral-
lel approaches have been used to parallelize the GA process,
and the first attempt of implementing GA with MapReduce
was done as described in [9], where the authors presented an
extension to the MapReduce model featuring a hierarchical re-
duction phase (MRPGA: MapReduce for Parallel GAs), which
can automatically parallelize GAs. The authors described
the design and implementation of the extended MapReduce
model on a .NET-based enterprise Grid system, and claim that
GAs cannot be directly expressed by MapReduce, therefore,
they offer their own implementation to extend the model to
MapReduce. Several shortcomings of this MRPGA approach
are pointed out in [8], however, showing that GA can be
implemented with MapReduce without the need of modifying
the structure of the MapReduce concept. In [8], the authors
described the algorithm design and implementation of GAs on
Hadoop [20] and investigated the convergence and scalability
of the implementation on the BitCounting problem, where the
results showed that their implementation converged after 220
generations, taking an average of 149 seconds per generation,
and scaling well up to problems with 105 variables. In [15],
the paper showed how GAs can be modeled with the MapRe-
duce model. The authors describe the algorithm design and
implementation of simple and compact GAs on Hadoop.

A practical application of GA modeled with the MapReduce
was proposed in [16]. The authors implemented GA for the
job shop scheduling problems using MapReduce, running
experiments with various population sizes (i.e., up to 107), and
on clusters of various sizes. Moreover, a parallel GA for the
automatic generation of JUnit test suites was proposed in [17].
The proposed solution is based on Hadoop MapReduce since
it is well supported on cloud platforms and on graphic cards,
thus, being an ideal candidate for high scalable parallelization
of GAs. Although related work found in the literature have
shown the remarkable power of GPUs in speeding up the
execution of GP using different frameworks, so far no one has
implemented and evaluated parallel GP using the MapReduce
methodology supporting the properties of fault tolerance, load
balancing, and data locality.

In this paper, we are proposing a MapReduce GP approach
(MRGP), which transforms the GP implementation into a



parallel model using MapReduce methodology. MRGP aims
to speed up the execution time of GP by providing the ability
to use large population sizes in order to find a good solution
in early generations, and to support the ability of GP to solve
the classification of large scale data problems.

III. PROPOSED APPROACH

Given that our proposed approach is based on GP as well
as MapReduce methodology, we first briefly introduce GP
and MapReduce before outlining the details of our proposed
MRGP algorithm.

A. Genetic Programming

GP [18] is an evolutionary computation technique that
solves optimization problems by offering a solution through
the evolution of computer programs by methods of natural
selection. GP is distinguished from other evolutionary com-
putation techniques in that it automatically solves problems
without requiring the user to know or specify the form or
structure of the solution in advance [19]. Each program in
GP is composed of mathematical and logical functions (+,
−, × , /, if , lessThan, etc.) and terminals (variables or
constants), and is represented as a tree. Before starting the run
of GP, several settings have to be defined, such as the functions
to be used in the programs, the fitness function needed to
evaluate the goodness of the program, and other settings like
the crossover and mutation probabilities. The GP process starts
by generating an initial population of programs. In the second
step, GP evaluates each program and calculates its fitness by
executing it and using the defined fitness function. After that,
natural operations are applied by first selecting programs, then
performing crossover and mutation to generate new programs.
This process is repeated until the new population has the
same size as the initial population, and this new population is
then used in the next generation. The evolution of generations
continues until the termination criterion (maximum number of
generation is reached, or a pre-specified accuracy) is satisfied.
The result of the run is the program with the best fitness value
found during the whole evolution.

B. MapReduce Methodology

MapReduce is a highly scalable model and can be used
across many computer nodes, and is mostly applicable for
data intensive applications and when there are limitations on
multiprocessing and large shared-memory machines.

The surpass of MapReduce moves the processing to the data
not vice versa, and processes data sequentially to avoid random
access that requires expensive seeks and disk throughput.
MapReduce solves the problem by formulating it into two
main operations, Map and Reduce. Both Map and Reduce
operations take inputs and produce outputs in the form of
<key, value>. The Map operation goes over a large number of
records and extracts interesting information from each record,
and then all values with the same key are sent to the same
Reduce operation. However, the Reduce operation aggregates

intermediate results, generated from the Map function that has
the same key, then generates the final results.

A well-known and commonly used implementation of
MapReduce is Apache Hadoop [20]. It is an open source
software framework that supports data-intensive distributed
applications licensed under Apache. It enables applications to
work with petabytes of data using thousands of independent
processors. One of the main components of Hadoop is the
storage component, Hadoop Distributed File System (HDFS).
HDFS provides high-throughput access to the data and main-
tains fault tolerance by creating multiple replicas of the target
data blocks. HDFS and MapReduce work together to support
the ability of moving computation to the data, and not vice
versa.

C. Proposed MRGP Approach

This paper proposes a MapReduce GP approach (MRGP),
which transforms the GP implementation from sequential into
a parallel model using MapReduce. The goal is to accelerate
the execution time of GP, providing the ability to use larger
population sizes in order to find a good solution in early
generations, and to give GP the ability to be used in the
classification of large scale data.

GP’s long execution time for solving classification problems
arise from the fitness calculations of each program in the pop-
ulation. Each program is executed on every record of the data
then the number of incorrectly classified records is counted.
This number is then used as the fitness of that program. Hence,
for example, if we have a population size of 100 programs, and
a dataset of 1,000 records, then 100×1000=105 computations
are executed for each generation. Therefore, MRGP distributes
and parallelizes these computations to accelerate the fitness
ranking process.

MRGP parallelizes the GP process based on the fitness
evaluation parallelization level by transforming the GP process
into the Map and Reduce operations. The Map is responsible
for the fitness evaluation, while the Reduce is responsible for
performing the remaining GP process (selection, crossover,
and mutation).

MRGP works as follows: at the beginning, the GP algorithm
generates the initial population based on the given settings.
Then, this population is written to the HDFS, thus, the mappers
can access it. After that, the population is distributed on the
mappers based on the number of mappers and the size of the
population. Each mapper receives its part of the population
and reads the programs from that part in the form of <Key,
Value>, where the Key is the program id, and the Value is
the program information. Then, it calculates the fitness of
that program based on the dataset, and updates the program
information to include the fitness, and then emits this program.
The program is emitted also in the form of <Key, Value>,
where the Key is the population number and the Value is the
program information.

Using the population number as the output key of the map-
per implies that all programs are going to the same reducer.
The reducer recollects the population and then performs all



GP steps of selection, crossover and mutation to produce the
new population. The Reducer then emits this population in the
form of <Key, Value>, where the Key is the program id, and
the Value is the program information, which is used in the
next mappers. Each Map and Reduce job is considered as a
generation of GP. The jobs continue iteratively until the GP
reaches its stopping criteria (either the maximum number of
generations or a good solution is found). The result of the GP
run from all generations is the program that has the best fitness
value; therefore, we need to save this program throughout the
generations. This process is done by the reducer also, where
the best program found so far is saved to a file on the HDFS.
The reducer updates this file whenever a better program than
the one previously saved is found by collecting the programs
from the mappers and comparing the best program saved in
the file with the best program given by the mappers. The
detailed process of MRGP is shown in Figure 1, where the
structure displays that MRGP has several mappers to perform
the fitness calculation for the individuals in the population,
and one reducer to combine the programs and proceed with
the GP iteration process.

Fig. 1. MRGP Process Architecture

IV. EXPERIMENTS AND RESULTS

In this section, we describe the experiments done to evaluate
the MRGP algorithm. First, the GP settings, execution environ-
ment, and information of the datasets used for the classification
problem are given. Then, the experimental results are provided
and discussed.

A. Environment

To evaluate the proposed MRGP approach, we ran the
experiments on the NDSU Hadoop cluster. The NDSU Hadoop
cluster consists of 18 nodes, containing 6GB of RAM, 4 Intel
cores (2.67 GHz each) with HDFS of 2.86 TB aggregated
capacity. For the MapReduce framework, Hadoop version 0.20
was used.

Experiments were performed using the Java Genetic Algo-
rithms Package (JGAP) [21] with the following settings:

• Population size = 1,000, 5,000, 10,000, 50,000.

• Number of generations = 100
• Crossover probability = 0.5
• Mutation probability = 0.1
• Maximum initial depth = 8
• Maximum crossover depth = 8
• Function probability = 0.7
• Dynamize arity probability = 0.05
• New chromosome percentage = 0.2
The functions used are +,−, ∗, /, Exp, Pow, and Log.

Given the stochastic nature of GP, ten independent runs were
performed.

The experiments are applied on six datasets [22], each was
partitioned into two parts; 66% of the dataset for training
the GP and building the classifier, and the remaining 34%
for testing the classifier. All details including the number of
features and records of these datasets are shown in Table I.

TABLE I
DATASETS

Dataset Classes Features Records
D1 Iono 2 34 (14) 351
D2 Vertebral-2C 2 6 (6) 310
D3 Blood 2 5 (4) 748
D4 Balance 3 4 (4) 625
D5 Vertebral-3C 3 6 (6) 310
D6 CTG-NSP 3 22 (7) 2126

A pre-processing stage was performed on the datasets,
where a feature selection process using the WEKA software
[23] was performed to choose the best features of the datasets
(a supervised attribute filter that allows various search and
evaluation methods to be combined [23]). The resulting num-
ber of features is shown in the brackets in Table I. The
experiments are applied on two types of datasets (binary and
multi-class). The benchmark classification problems are:

• Ionosphere: Classification of radar returns from the iono-
sphere. The class label is either “Good”, which means that
radar returns are those showing evidence of some type of
structure in the ionosphere, or “Bad”, which means the
returns are those that do not (their signals pass through
the ionosphere).

• Vertebral Column: Data set containing values for six
biomechanical features used to classify orthopaedic
patients into 3 classes (normal, disk hernia or
spondilolysthesis), or 2 classes (normal or abnormal).

• Blood Transfusion Service Center: Data taken from the
Blood Transfusion Service Center in the Hsin-Chu City of
Taiwan. Class labels represent whether or not the person
donated blood in March 2007.

• Balance Scale: generated to model psychological exper-
imental results. Each example is classified as having
the balance scale tip to the right, tip to the left, or be
balanced.

• Cardiotocography: fetal cardiotocograms (CTGs) were
automatically processed and the respective diagnostic fea-
tures measured. Classification is categorized with respect
to a fetal state (N, S, P).



B. Results

To evaluate MRGP, the experiments measure the speed
of convergence and the impact of population sizes, testing
accuracy, average time for mapper, speedup and scalability.

The speed of convergence of MRGP per generation, i.e.,
highest accuracy that can be achieved for each dataset is
measured. In addition, a comparison of the impact of the
population size on the MRGP convergence is performed. The
experimental results for different populations sizes (1,000,
5,000, 10,000 and 50,000) are displayed in Figure 2, where it is
shown that larger population sizes yield better solutions, which
is intuitive since more function evaluations are performed. For
example, for D1, the population size 1,000, starts with an
accuracy of 76.6%, while population 5,000 starts with 83.12%,
and population 50,000 starts with 86.14%. Moreover, at the
end of 100 generations, population 1,000’s best accuracy is
89.18%, while population 50,000’s best accuracy is 93.51%.
On the other hand, the accuracy of 89.18% is achieved with
population size 50,000 in the 9th generation unlike the 100
generations needed for population size 1,000. In general, the
same observation can be obtained with the other datasets.
Therefore, larger population sizes achieve better results when
the same number of generation is used. This can be explained
by having larger population sizes implies that more individuals
search the solution space, and therefore, the possibility to find
better results is higher than using smaller population sizes.

After the GP has trained the classifier by finding the best
program using the training dataset, this classifier is then tested
using the testing dataset by measuring its quality using the
accuracy metric. The accuracy results of the MRGP classifier
for the six datasets and by using different population sizes are
shown in Table II. The tables illustrate the average accuracy
of ten independent runs for each dataset. From the tables we
can infer that for each dataset, the larger the population size
the better the accuracy. In general, the difference between the
accuracy of using a population size of 1,000 and 5,000 is
somehow smaller, while using larger population sizes such
as 10,000 or 50,000 increases the difference. For example, for
D1, the accuracy for population size 1,000 is 87.66%, while for
population size of 5,000 it is 90.25% (with +2.59% difference),
nevertheless, the accuracy of population 50,000 is 92.91%
(the difference compared to population size 1,000 is +5.25%).
The same trend is seen for D4, where pop1000’s accuracy is
71.22%, while pop5000’s is 73.89% (with difference +2.67%),
while pop10,000’s accuracy is 75.30 (difference equal to
+4.08%), moreover, pop50,000’s accuracy is 81.59% (with the
highest difference +10.37%).

The detailed accuracy results for the six datasets using
different population sizes are shown by the box plots in Figure
3, where the circle represents the average of 10 runs, the
solid bar depicts the median, the lower end of the dashed
line represents the minimum accuracy observed by the GP
for a given population size, and the upper end of the dashed
line depicts the maximum accuracy value. It can be observed
from the figure that using a population size of 50,000 leads

(a) D1 Convergence (b) D2 Convergence

(c) D3 Convergence (d) D4 Convergence

(e) D5 Convergence (f) D6 Convergence

Fig. 2. Convergence speed with different population sizes

TABLE II
ACCURACY RESULTS - TESTING PHASE

Dataset Pop 1000 Pop 5000 Pop 10000 Pop 50000
D1 87.66 90.25 91.998 92.91
D2 76.60 79.15 80.28 81.13
D3 74.51 74.82 75.01 75.36
D4 71.22 73.89 75.30 81.59
D5 77.73 83.20 78.87 81.88
D6 81.99 81.66 82.46 82.26

to better average accuracy. Moreover, it has smaller box sizes
(especially for D1, D2, D3, and D4), which means that the
accuracy values are within a small range, hence it is more
reliable than using a population size of 50,000.

However, since the scaling of the population size by keeping
the number of generations fixed is not a fair comparison, we
have investigated MRGP in terms of numbers of fitness evalu-
ations. In particular, we kept the number of fitness evaluations
fixed to 100,000, using different populations sizes of 1,000,
2,500, 5,000, 7,500, and 10,000 and using different number



(a) D1 Accuracy (b) D2 Accuracy

(c) D3 Accuracy (d) D4 Accuracy

(e) D5 Accuracy (f) D6 Accuracy

Fig. 3. Accuracy results - Testing Phase

of generations with 100, 40, 20, 13, and 10, respectively.
Figure 4 shows the accuracy results whereby for all columns
belonging to a particular dataset all accuracy results show no
significant difference as can be seen by the standard deviation
bars. However, what we can clearly see in Figure 5 is that
the run time for larger population sizes significantly reduces
as seen by all datasets. The reason for this is using larger
population sizes need smaller numbers of generations, which
in turn means less MapReduce jobs.

The parallelization of MRGP provides the ability to use
large population sizes such as 50,000 and obtain similar
high accuracy values. Therefore, to evaluate the parallelization
aspect of MRGP, first we calculated the average time needed
for different numbers of mappers using the same population
size of 100,000 programs and applied it on dataset D6 since
it is the largest one. A large population and large dataset
were chosen in order to demonstrate higher utilization rates
of the MapReduce (Hadoop) framework, and to reduce the
parallelization overhead such as starting MapReduce jobs,
starting mappers and reducers operations.

Figure 6 displays the average time spent in a mapper,

Fig. 4. Accuracy Results based on Fitness Evaluations (100,000)

Fig. 5. Time Results based on Fitness Evaluations (100,000)

showing that using more mappers reduces the execution time
needed in each mapper. This is because the population is
divided into smaller parts based on the number of mappers,
hence, using more mappers leads to the division of the
population into smaller portions, and in turns leads to a faster
average execution time in the mapper. However, when the
number of mappers increases, the overhead of initializing the
mappers also increases, therefore, in Figure 6 the average
time per mapper does not reduce according to the number
of mappers.

The scalability measures the impact of using different popu-
lation sizes when the same number of mappers is used. Figure
7 shows the average time per mapper, for each population size,
using the six datasets, and 10 mappers. It can be inferred that
MRGP scales well between population sizes 1,000 to 10,000
on all the datasets. However, it increases drastically as the
population size reaches 50,000. Therefore, a recommendation
that can be made here is that using a population size between
1,000 to 10,000 and adding more mappers would enable
MRGP to scale well for larger population sizes.

We note in this figure, that the average mapper running time
when using larger population sizes does not increase by the



Fig. 6. Average time per Mapper

same ratio as the size of population, such as when using a 50
times larger population size (comparing 1,000 to 50,000), the
running time increases approximately twice. The reason for
this is that the MapReduce processes of copying and sorting
of the larger populations causes extra overhead.

Fig. 7. Scaleup - Mapper Time

Figure 8 presents the speedup results of the MRGP algo-
rithm compared to the optimal linear speedup. To measure the
speedup, we fixed the population size to 100,000 by increasing
the number of mappers by a certain ratio (factor of 2). Then,
the speedup measure is calculated as:

Speedup =
Time2
Timen

(1)

where Time2 is the time using 2 mappers, Timen is the
time using n mappers, where n= {2, 4, 6, 8, 10, 12, 14}.
We started with 2 mappers and used the factor of 2, because
running the MRGP using one mapper will not be efficient due
to the high overhead of initializing the MapReduce framework
compared to running the standard GP.

The figure illustrates that the speedup was very close to
the linear speedup (optimal scaling) using 4, 6 mappers, but
after that (with more mappers) it diverges from the linear

speedup quite dramatically. This is because of the overhead
of the MapReduce (Hadoop) framework, which results from
starting the mappers and storing the outputs to the distributed
file system, in addition to other management tasks. We have
to note that the Hadoop framework has proved its efficiency
of using very large input/data (which is in our MRGP the
population size) and that MapReduce’s speedup scales much
better with larger population sizes. To proof this we ran MRGP
with 200,000 or larger population sizes, however, the JGAP
framework did not work due to garbage collection issues which
need to be addressed.

Fig. 8. MRGP Speedup

In summary, MRGP confirms the ability of implementing
GP with the MapReduce framework by providing the ability
of using large population sizes, such as 50,000, which is
somehow impossible for the sequential GP. Also, using larger
population sizes result in a faster convergence and a higher
accuracy. Moreover, the structure of MRGP guarantees its
scalability, and supports its speedup based on the provided
resources. This supports the ability of applying MRGP to the
classification of large scale data, which is not possible with
the sequential version.

V. CONCLUSION

This paper proposed a parallelized version of the GP
algorithm applied to the fitness evaluation level, referred to
as MRGP. MRGP is implemented based on the MapReduce
methodology which is a new methodology that manages fault
tolerance, load balancing, and data locality. MRGP accelerates
the execution time of GP by distributing the population to
different mappers, which perform the fitness evaluation of the
programs, and then the reducer combines these mappers and
continues the GP process. MRGP also provides the ability to
use large population sizes, thus, finding the best result in fewer
numbers of generations. Experiments evaluated MRGP mea-
suring the speed of convergence, accuracy, average time per
mapper, scalability and speedup. The results confirm the goals
of MRGP by accelerating the execution time, supporting the
usage of large population sizes, and obtaining higher accuracy
while maintaining the speedup and scalability properties.



Future work will involve investigating MRGP with much
larger population sizes by solving the issues of the current
GP implementation. Moreover, we plan to parallelize GP on
the population level, and run experiments especially for the
classification of large data sets.

ACKNOWLEDGMENT

The authors acknowledge the support of the NDSU Advance
FORWARD program sponsored by NSF HRD-0811239 and
ND EPSCoR through NSF grant EPS-0814442.

REFERENCES

[1] S. M. Winkler, M. Affenzeller, and S. Wagner, “Using
enhanced genetic programming techniques for evolving
classifiers in the context of medical diagnosis - an
empirical study,” in MedGEC 2006 GECCO Workshop on
Medical Applications of Genetic and Evolutionary Com-
putation, S. L. Smith, S. Cagnoni, and J. van Hemert,
Eds., Seattle, WA, USA, 8 July 2006.

[2] H. Jabeen and A. R. Baig, “Review of classification
using genetic programming,” International Journal of
Engineering Science and Technology, vol. 2, no. 2, pp.
94–103, 2010.

[3] W. Smart and M. Zhang, “Using genetic programming
for multiclass classification by simultaneously solving
component binary classification problems,” in Proceed-
ings of the 8th European conference on Genetic Program-
ming, ser. EuroGP’05. Berlin, Heidelberg: Springer-
Verlag, 2005, pp. 227–239.

[4] S. Harding and W. Banzhaf, “Fast genetic programming
and artificial developmental systems on GPUs,” in High
Performance Computing Systems and Applications, 2007.
HPCS 2007. 21st International Symposium on, May, pp.
2–2.

[5] W. Banzhaf, S. Harding, W. Langdon, and G. Wilson,
“Accelerating genetic programming through graphics
processing units,” in Genetic Programming Theory and
Practice VI, ser. Genetic and Evolutionary Computation.
Springer US, 2009, pp. 1–19.

[6] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra, MPI: The Complete Reference. MIT Press
Cambridge, MA, USA, 1995.

[7] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” 2004, pp. 137–150.

[8] A. Verma, X. Llora, D. Goldberg, and R. Campbell,
“Scaling genetic algorithms using mapreduce,” in Intelli-
gent Systems Design and Applications, 2009. ISDA ’09.
Ninth International Conference on, 30 2009-Dec. 2, pp.
13–18.

[9] C. Jin, C. Vecchiola, and R. Buyya, “MRPGA: An
extension of mapreduce for parallelizing genetic algo-

rithms,” in eScience, 2008. eScience ’08. IEEE Fourth
International Conference on, Dec., pp. 214–221.

[10] A. W. McNabb, C. K. Monson, and K. D. Seppi,
“MRPSO: Mapreduce particle swarm optimization,” in
GECCO, 2007, p. 177.

[11] B. Wu, G. Wu, and M. Yang, “A mapreduce based ant
colony optimization approach to combinatorial optimiza-
tion problems,” in Natural Computation (ICNC), 2012
Eighth International Conference on, May, pp. 728–732.

[12] S. Harding and W. Banzhaf, “Fast genetic programming
on GPUs,” in Proceedings of the 10th European confer-
ence on Genetic programming, ser. EuroGP’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 90–101.

[13] D. A. Augusto and H. J. C. Barbosa, “Accelerated paral-
lel genetic programming tree evaluation with OpenCL,”
J. Parallel Distrib. Comput., vol. 73, no. 1, pp. 86–100,
Jan. 2013.

[14] Khronos OpenCL Working Group, The OpenCL
Specification, version 1.2, 2012. [Online]. Available:
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

[15] D. E. G. Abhishek Vermay, Xavier Llora and R. H.
Campbelly, “Scaling simple, compact and extended com-
pact genetic algorithms using mapreduce by,” 2010.

[16] D.-W. Huang and J. Lin, “Scaling populations of a
genetic algorithm for job shop scheduling problems us-
ing mapreduce,” in Cloud Computing Technology and
Science (CloudCom), 2010 IEEE Second International
Conference on, 30 2010-Dec. 3, pp. 780–785.

[17] L. Di Geronimo, F. Ferrucci, A. Murolo, and F. Sarro, “A
parallel genetic algorithm based on hadoop mapreduce
for the automatic generation of junit test suites,” in
Proceedings of the 2012 IEEE Fifth International Con-
ference on Software Testing, Verification and Validation,
ser. ICST ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 785–793.

[18] A. E. Eiben and J. E. Smith, Introduction to Evolutionary
Computing. SpringerVerlag, 2003.

[19] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide
to Genetic Programming. Lulu Enterprises, UK Ltd,
2008.

[20] (2011) Apache software foundation, hadoop mapreduce.
[Online]. Available: http://hadoop.apache.org/mapreduce

[21] K. Meffert. (2012) et al. JGAP - Java Genetic Algorithms
and Genetic Programming Package. [Online]. Available:
http://jgap.sf.net

[22] A. Frank and A. Asuncion, “UCI machine learning
repository,” 2010. [Online]. Available: http://archive.ics.
uci.edu/ml

[23] I. Witten, E. Frank, and M. Hall, Data Mining: Practical
Machine Learning Tools And Techniques, 3rd Edition.
Morgan Kaufmann, 2011.


