
Memetic Algorithms applied to the Optimization of
Workflow Compositions

Simone A. Ludwig

Department of Computer Science, North Dakota State University, Fargo, North Dakota,
USA

Abstract

The selection of services of a workflow based on Quality of Service (QoS)
attributes is an important issue in service-oriented systems. QoS attributes
allow for a better selection process based on non-functional quality criteria
such as reliability, availability, and response time. Past research has mostly
addressed this problem with optimal methods such as linear programming
approaches. Given the nature of service-oriented systems where large num-
bers of services are available with different QoS values, optimal methods are
not suitable and therefore, approximate techniques are necessary. In this pa-
per, we investigate Genetic algorithms and Particle swarm optimization for
the service selection process. In particular, both methods are combined with
an optimal assignment algorithm (Munkres algorithm) in order to achieve
higher solution qualities (success ratios) and to form a so called memetic
algorithm. Experiments are conducted to investigate the suitability of the
approaches and to compare the memetic algorithms with their non-memetic
counterparts. The results reveal that the memetic algorithms are very suit-
able for the application to the workflow selection problem.

Keywords: Genetic algorithms, Particle swarm optimization, Munkres
algorithm, Quality of service, Memetic algorithms

1. Introduction

The distribution of software systems have increased over the last decade.
There are many different reasons for this increase, and one of them is the need
to integrate and connect heterogeneous applications and resources within
organizational, but also across organizational boundaries. In particular, most

Preprint submitted to Swarm and Evolutionary Computation October 6, 2014



legacy systems and applications were designed for their specific purpose, but
not with the view in mind that they need to be integrated with and adapted
to different application scenarios. This lack in the design of these legacy
systems require new paradigms and approaches to be integrated to cope
with these challenges.

Service-orientation provides the conceptual principle necessary to deal
with the integration challenges as well as with the increasing complexity by
providing adaptive software units referred to as services. Services are char-
acterized by properties such as loose coupling, well-defined service contracts,
and standardization that allows them to be independent of any particular
implementation technology [1].

Figure 1: Service-Oriented Architecture

The idea behind service-oriented computing is that businesses offer their
application functionality as services over the Internet, and users or compa-
nies can make use of these services by composing and integrating these ser-
vices into their applications. Service-oriented architecture is the concept that
combines this idea. Figure 1 describes the basic components of the service-
oriented architecture that are the providers, requesters and registries. The
service provider publishes the service description in a service registry, and a
service requester can query a service from the registry, and dynamically bind
it to one of the services that are returned by the search query.

The main idea of service-orientation is to compose these services by dis-
covering them and then dynamically invoking them when building applica-
tions, rather than building them from scratch or reusing other applications.
Service composition (also called orchestration) enables the development of

2



building service-oriented applications using existing services. The result of
this composition process is referred to as a composite service. In this pa-
per, we assume that all available services are validated pre-runtime, so that
failure cannot occur during the composition process due to incompatibility.
The standard orchestration language is WS-BPEL (Web Service Business
Process Execution Language) [2]. Choreography is another term used in
service-oriented environments that describes the message interchanges be-
tween the different participants in service-oriented systems. It provides the
global distributed model of message exchanges without the need of a cen-
tral coordinator [3]. The Web Service Choreography Description Language
(WS-CDL) [4] is one of the first languages for describing the global model of
service interactions.

One primary requirement of service-oriented systems is the ability of self-
adaptivity [5]. Self-adaptivity in the area of service-oriented environments
means that the system should be able to adapt its behavior depending on
the changes within its environment. A possible solution for this adaptabil-
ity, in particular for service composition, is the concept of Quality of Service
(QoS). All non-functional attributes of a service, such as performance-specific
attributes, are described by QoS. QoS attributes can be categorized into
deterministic and non-deterministic attributes [6]. Non-deterministic QoS
attributes, such as response time, have uncertain values during service invo-
cation. It is necessary to provide as accurate as possible values for all QoS
attributes for composite applications and their execution.

A Service Level Agreement (SLA) is a contract between a service provider
and a service consumer that captures the agreed-upon terms with respect to
QoS parameters. Considering a service-oriented computing environment, ca-
pabilities are shared via the implementation of web services exposed to by a
service provider. When a service requester requires a specific functionality,
which cannot be provided by one single service, the composition of multi-
ple services needs to be done thereby creating a workflow. The composition
of web services should not only be functionally compatible, but should also
be compatible with regards to the defined service levels. In particular, QoS
attributes need to be considered for the dynamic binding process of the con-
crete services available. Therefore, QoS-aware composition is necessary given
the changing and dynamic environment of service-oriented systems (services
come online or go offline, new services become available, or existing services
change their characteristics).

This paper addresses the workflow selection using approximate algorithms

3



such as Genetic algorithms (GA) and Particle Swarm Optimization (PSO)
for the optimization process. Furthermore, the selection of services is based
on QoS parameters as well as on service level agreements. Preliminary results
have shown that the approximate algorithms achieved an optimized service
selection that were higher than that of a random selection and took less time
than the optimal algorithm, however, the solution quality needs to be further
improved. In order to address this, we apply the memetic algorithm idea of
combining an evolutionary algorithm or swarm intelligence algorithm with a
local search technique in order to balance the exploration and exploitation
of the search space, and therefore, achieving higher solution quality. GA as
well as a PSO approach are combined with an optimal search method called
the Munkres algorithm. Both algorithms are implemented and experiments
show that the combination achieves much higher solution qualities applied to
the workflow selection problem than the basic GA and PSO. In particular,
it balances the high computational complexity of the Munkres algorithm is
balanced with the stochastic advantages of the GA and PSO.

This paper is structured as follows. Section 2 describes related work in the
area. In Section 3, background information on workflows, quality of service,
and service level agreements are given. Section 4 outlines and describes the
approaches implemented, and the experiments conducted. The results are
displayed in Section 5. And last but not least, Section 6 summarizes the
findings and gives an account to future work.

2. Related Work

Related work in the area of service and workflow selection can broadly
be classified into the following categories: web service infrastructure, agent-
based, fuzzy-based, trust-based and optimization approaches. Some but not
all of these approaches use QoS as a measure for the selection process.

A dynamic web service selection and composition approach is described
in [7]. The approach determines a subset of web services to be invoked during
runtime in order to orchestrate a composite web service successfully. A finite
state machine model is used to describe the permitted invocation sequences
of the web service operations, and a reliability measure is aggregated for the
web service operations.

A transactional and QoS-aware selection algorithm is proposed in [8].
The composition of services is recursively constructed based on diverse func-
tionalities, transactional properties and QoS thereby considering the user’s

4



requirements. This approach addresses the composition of a workflow based
on transactional properties and QoS characteristics using proofs as well as
an experimental analysis.

An adaptive hybrid semantic matchmaker for services is proposed in [9].
The matchmaker determines three kinds of semantic service similarity that
are logic-based, text-based and structural-based. The degree of structural
similarity is computed with the help of the SWDL-analyzer tool by means of
XMLS tree edit distance measurement, string-based and lexical comparison
of the respective services.

An open, fair, dynamic and secure framework to evaluate the QoS of
services is outlined in [6]. The fair computation and enforcement of QoS of
web services should have minimal overhead, but yet should be able to achieve
sufficient trust by both service requesters and providers. A case study of a
phone service provisioning market place application shows the idea of the
approach.

The area of agent-based service selection has looked at ways to formu-
late the problem of service selection. In [10], inspiration from traditional
recommender approaches is taken and a new agent-based approach in which
agents cooperate to evaluate service providers is proposed. The agents rate
each other, and decide on the weight to place on each other’s recommenda-
tions. The algorithm is devised to work in the context of a concept lattice
that enables to find relevant agents.

Another approach [11] developed a multi-agent framework based on an
ontology for QoS and a new model of trust. The ontology provides the basis
for the providers to advertise their service capabilities and for consumers to
express their preference in order for ratings of services to be gathered and
shared. The ratings give an empirical measure for the selection of services,
and the ratings are quality-specific and obtained by automatic monitoring or
user input.

A trustworthy service selection and composition framework based on
Bayesian networks and a beta-mixture model is presented in [12]. This ap-
proach was devised since existing approaches either failed to capture the
dynamic relationships between services or assumed that the environment is
fully observable. Experimental results show that their approach punish and
reward services in terms of the quality criteria they offer, also this approach
is effective even though having to deal with incomplete observations.

Another trust and reputation management approach was introduced in
[13]. Their approach tackles the issue to detect and deal with false ratings

5



by dishonest providers and users. A new QoS-based selection approach and
ranking solution is given with a formal description, and in addition, exper-
iments are conducted to validate and demonstrate that the solution yields
high-quality results under various realistic deception behaviors.

In [14], a system for supporting the user in the discovery of semantic
web services is used to model an ad-hoc service request by selecting concep-
tual terms rather than using strict syntax formats. The selection exploits
the fuzzy formal concept analysis to request the system to return a list of
semantic web services that match the user query.

A service selection method based on the technique for Order Preference
by Similarity to an ideal Solution (TOPSIS) with fuzzy opinions is used to
evaluate the weights of various criteria and the rating of each alternative web
service in [15]. The approach uses triangular fuzzy membership functions to
represent the weights of criteria and the ratings of web services.

In [16], a fuzzy-based UDDI (Universal Description, Discovery and Inte-
gration) with QoS support is proposed to consider the non-functional quality
of QoS information for personalized web service selection. This approach
considers the objective factors described by service providers, and subjective
information with trustability evaluations from users by adapting GA to learn
the user preferences, and to apply fuzzy logic to make decisions. The users
can determine the most suitable web service with a fuzzy query interface to
provide subjective and objective factors.

A decision model under consumer’s vague perception of intuitionistic
fuzzy set for QoS-aware web services selection is proposed in [17]. The se-
lection method is modeled as a fuzzy multi-criteria decision-making problem
by considering the non-functional QoS properties that heavily rely on the
perceptions of service providers and consumers.

The workflow service selection problem has received a lot of attention in
the past years whereby many linear-programming approaches have been used
[18][19]. In [20], complex workflow patterns are used to address the service
selection problem, and linear programming is used to solve the optimization
problem using an aggregation function for different QoS attributes.

In [21], a quality-driven web service composition approach is outlined
applying linear programming. A global planning approach is employed to
optimally select component services during the execution of a composite ser-
vice. However, given that it is an optimal method it does not scale very well
with growing search spaces [22].

Some approximate algorithms have also been applied. For example, in

6



[23], a GA approach is used for three QoS parameters (response time, cost,
reputation). Basic GA-parameters are varied such as mutation rate, number
of generations, fitness function, penalty factor, as well as a comparison of
the GA-approach to other heuristics is done. The study reveals that the GA
offers a good overall performance, however, not as good when compared to
the other heuristics such as branch-and-bound and exhaustive search. This is
surprising since GA usually reaches very close to the optimal solution. Their
work, however, does not address SLA.

In [22], another GA approach is discussed. They are using four QoS
attributes (cost, response time, availability, reliability) and include a factor
measuring the ratio of the generations, and the maximum generations as well
in their fitness function. Similar to the approach above, no SLA is addressed.
Their empirical study compares the GA approach with linear programming.
They point out that the linear programming approach does not handle non-
linear functions, which the GA method can. Another major point they make
is that the GA scales well when the number of services increases compared
to the linear programming approach.

A multi-objective optimization based particle swarm optimization algo-
rithm is presented in [24]. The approach solves the global optimization prob-
lem for service selection of web services compositions. In particular, it uses
a multi-objective constrained optimization with constraints producing a set
of constraints to meet the Pareto optimal solution. The QoS parameters
considered were execution time, cost, availability, and reliability.

A PSO-based heuristic to schedule applications to cloud resources that
takes into account both computation cost and data transmission cost is pre-
sented in [25]. Workflow applications by varying its computation and commu-
nication costs are compared. The cost savings when using PSO as compared
to using existing BRS (Best Resource Selection) algorithm is analyzed. The
results show that three times the cost savings can be achieved, as well as a
good distribution of workload onto resources is obtained.

Related work done in the past by the author has followed two direc-
tions. First, GA and PSO applied to the single service selection problem
was investigated [26]. It was discovered that GA and PSO are suitable for
the single service assignment since every service request is optimized and a
very good service with good QoS parameters is assigned. The second di-
rection addressed the single- versus multi-objective GA approach [27]. In
some studies done by other researchers, the single- vs. multi-objective GA
was investigated separately, however, no comparison had been done between

7



the two, and furthermore, no consideration for service level agreements had
been incorporated. The findings of this investigation revealed that the single-
objective GA approach is better suited by achieving equivalent assignments
needing less time for the optimization than the multi-objective approach.

However, compared to an optimal method, the Munkres algorithm [28],
the approximate methods (GA and PSO) do not achieve close solution quali-
ties within a reasonable amount of time. In order to address this issue and to
improve the solution quality of the approximate methods further, both GA
and PSO are combined with the Munkres algorithm. This allows to generate
higher solution quality at the same time keeping the execution time of the
algorithms within a reasonable range given that the speed of the optimization
is paramount in service-oriented environments.

3. Workflow Composition

3.1. Workflow Example

Figure 2: Example of a knowledge discovery workflow

Figure 2 shows the abstract as well as the concrete services. In order to
illustrate the workflow composition, an example workflow of knowledge dis-
covery in databases, also known as the KDD process [29], is introduced. The
process is as follows: the data is first cleaned and preprocessed to remove
noise or outlier in the data (AS1). Then, the data is reduced and projected

8



that includes finding useful features to represent the data (AS2). Afterwards,
the function of the data mining operation has to be chosen (e.g., summariza-
tion, classification, regression, and clustering) (AS3). Then the chosen data
mining algorithm is run in search of patterns of interest to be represented in
a particular form such as classification rules or trees, regression, clustering,
sequence modeling, etc. (AS4). Once this is done, the results need to be
interpreted, and redundant or irrelevant patterns need to be removed, and
useful patterns need to be translated into terms understandable by users
(AS5).

The concrete services (CSxy) of each abstract service (ASx) provide the
same functional, but different non-functional properties, i.e., QoS attributes.
Selecting the services of a workflow based on QoS parameters requires an
algorithm that can optimize the assignment of concrete services within a
workflow for a given abstract workflow description. Furthermore, we are
considering that multiple requests are being served at the same time. Given
that performance in a service-oriented environment is of essence, we argue
that we do not need to have optimal assignments, but close to optimal as-
signments should be found within a reasonable time.

3.2. Quality of Service Metric and Objective Function

There are many measures available for different QoS criteria, however,
we consider the following four generic quality criteria for single services, also
referred to as QoS parameters: reliability, availability, response time, and
cost. The first two QoS parameters are to be maximized, whereas the last
two are to be minimized.

The reliability q1(s) of a service is the fraction of requests correctly re-
sponded to within a maximum expected time frame. Reliability is a measure
related to the hardware and software configuration of web services and their
network connections. Reliability values are computed from past data measur-
ing the successful executions in relation to the overall number of executions.

The availability q2(s) of a service is the fraction of time that the service
is accessible. It measures the total amount of time in which the service is
available during the last defined period of time (threshold is set by adminis-
trator).

The response time q3(s) denotes the expected delay in seconds from the
moment a request is made until the moment when the results are returned.
Services advertise their processing time or provide methods to inquire about
it.

9



The execution cost q4(s) represents the amount of money a user has to pay
for executing a service. Web service providers usually advertise the execution
price directly or they provide methods to inquire about it. The QoS vector
q(s) of a service s is defined as follows: q(s) = (q1(s), q2(s), q3(s), q4(s)).

However, in this study we are concerned not only with single services, but
with complete workflows, and therefore, the QoS parameters of the single
services have to be aggregated. We assume in our study that we are only
using sequential workflows. Therefore, the availability Q1(w) and reliability
Q2(w) of a workflow w is calculated as the product of each single services
availability and reliability respectively (as proposed by [30]). The response
time Q3(w), and execution price Q4(w) of a workflow w is the sum of each
single service’s response time and service cost respectively.

Therefore, the QoS vector Q(w) of a workflow w is denoted as: Q(w) =
(Q1(w), Q2(w), Q3(w), Q4(w)).

Our goal is to maximize the selection of services within a workflow based
on the QoS parameters. In addition, we are maximizing N workflows at the
same time. The single objective function for reliability and availability is:

fobj =
Qij −Qmin

j

Qmax
j −Qmin

j

(1)

and the single objective function for response time and cost is:

fobj =
Qmax

j −Qij

Qmax
j −Qmin

j

(2)

whereby we define Qij to be the value for workflow i and the jth QoS
parameter, and we define Qmax

j to be the maximum score any of the con-
sidered services achieves for the jth QoS parameter as defined above, i.e.,
Qmax

j = maxs∈Sqj(s) where S is the set of all possible services. And simi-
larly, Qmin

j to be the minimum score any of the considered services achieves
for the jth QoS parameter (Qmin

j = mins∈Sqj(s)). Given that the different
service levels need to be taken into account we have to define the following
constraints:

Qij ≥ Qj(p) for j = 1, 2 (3)

and
Qij ≤ Qj(p) for j = 3, 4 (4)

10



whereby Qj(p) is the jth QoS value given the chosen service level plan p.
The overall objective function for the optimization of the workflows is the
following:

fobj = max
N∑

i=1

(
2∑

j=1

ωj

Qij −Qmin
j

Qmax
j −Qmin

j

+
4∑

j=3

ωj

Qmax
j −Qij

Qmax
j −Qmin

j

) (5)

Note that the individual QoS parameters are treated differently depending
on whether its value is minimized or maximized. Normalized scores are used
and each QoS parameter can be weighted differently by parameter wj .

3.3. Service Level Plan

A service level agreement (SLA) is a contract between a service provider
and a service consumer, which captures the agreed-upon terms with respect
to QoS parameters. Considering a service-oriented environment, capabili-
ties are shared via the implementation of web services exposed by a service
provider. When a service requester requires a specific functionality that can-
not be provided by one single service, the composition of multiple services
needs to be done thereby creating a workflow. In addition, the composi-
tion of web services should not only be functionally compatible, but also
should be compatible with regards to the defined service levels. We define
the SLA for each user category’s reliability, availability, response time, and
cost accordingly.

Table 1: Normalized service levels for different service plans

Reliability Availability Response time Cost
Platinum 0.6 0.5 0.7 0.5
Silver 0.7 0.7 0.5 0.65
Gold 0.8 0.9 0.3 0.8

Table 1 outlines the different service level plans (SLP) with normalized
service level agreement values that are available to the users. Three different
user categories are defined as Platinum, Silver and Gold.

The measure that is observed is the success ratio that measures the per-
centage of successful workflow compositions in terms of fulfilled SLA (as given
in Equations (3) - (5)). For example, a success ratio of 90% implies that 90
out of 100 workflow requests fulfill the SLA requirements.

11



4. Approaches

Since evolutionary algorithms are not best suited for fine-tuning the
search in complex combinatorial spaces, researchers have developed hybridiza-
tion methods to improve the efficiency of the search [31]. Memetic algorithm
is the hybridization of using an evolutionary algorithm in combination with
a local search technique. Memetic algorithm are seen as extensions of evo-
lutionary algorithms that apply a separate refinement process to improve
the solution quality with methods such as hill-climbing or simulated anneal-
ing. Memetic algorithms are also known as hybrid evolutionary algorithms
[32], Baldwinian evolutionary algorithms [33], Lamarckian evolutionary al-
gorithms [34], cultural algorithms or genetic local search.

The underlying idea of all these algorithms is that they combine evolu-
tionary algorithm operators with local search heuristics. Furthermore, com-
binations with constructive heuristics or optimal methods may also be con-
sidered within this category of algorithms (and this is what we are making
use of). Memetic algorithms have been shown to be more efficient and more
effective than the evolutionary algorithms alone for certain problem domains.
Memetic algorithms can achieve higher solution quality in fewer numbers of
generations. In particular, for many combinatorial optimization problems
memetic algorithms have proven themselves to be very effective. An exam-
ple of such is the quadratic assignment problem and the traveling salesman
problem [35].

For more information on memetic algorithms, the reader is referred to an
extensive review that is given in [36].

4.1. Munkres Algorithm

The Munkres Algorithm is an optimal combinatorial optimization algo-
rithm, and was first known as the Hungarian algorithm. The Hungarian
algorithm received its name by Kuhn in 1955 [37] [38] since it was based
on the earlier works of two Hungarian mathematicians (Denes Koening and
Jeno Egervary). Two years later, Munkres reviewed and enhanced the al-
gorithm and has been known as the Munkres algorithm [28] [39] ever since.
The original algorithm was O(n4), however, it was modified to achieve an
improved complexity of O(n3).

The assignment problem as formally defined by Munkres in 1957 [102] is:
“Let rij be a performance ratings for a man Mi for job Jj. A set of elements
of a matrix are said to be independent if no two of them lie in the same line

12



(the word “line” applies both to the rows and to the column of a matrix).
One wishes to choose a set of n independent elements of the matrix (rij) so
that the sum of the element is minimum.”

Similarly, the problem of workflow selection can be defined as: An n×m
requester-workflow matrix, representing the success ratio of each requester
with every workflow combination. The Munkres algorithm works on this
matrix, to assign the requests to workflows as to achieve an overall optimal
success ratio.

A detailed description of the steps of the Munkres algorithm is given as:

1. Step 1: A n×m matrix is created, called the success ratio matrix, in
which each element represents the success ratio of assigning one of n
requests to one of m workflows.

2. Step 2: For each row of this matrix, the highest value of the success
ratio is found, and is subtracted from every element in the row. The
absolute values are taken.

3. Step 3: A zero (Z) is searched for in the resulting matrix. If there is
no starred zero in the row or column, the Zero is starred Z. This is
repeated for each row in the matrix.

4. Step 4: Then each column containing a starred zero is covered. If
K columns are covered, the starred zeros describe a complete set of
unique assignments. If this is the case, the algorithm continues with
Step 8, otherwise, with Step 5.

5. Step 5: A non-covered zero in the matrix is found, and is primed.
If there is no starred zero in the row containing a primed zero, the
algorithm continues with Step 6. Otherwise, this row is covered and
the column containing the starred zero is uncovered. This continues
until there are no uncovered zeros left. Finally, the smallest uncovered
value is saved and the algorithm continues with Step 7.

6. Step 6: A series of alternating primed and starred zeros are con-
structed in this step. Let Z0 represent the uncovered primed zero found
in Step 5. Let Z1 denote the starred zero in the column of Z0. Let Z2

denote the primed zero in the row of Z1. This series of alternating
primed and starred zero construction is continued until the series ter-
minates at a primed zero that has no starred zero in its column. Then,
each of the starred zero of the series is unstarred, and each of the primed
zero of the series is starred, and finally all the primes are erased and
every line in the matrix is uncovered; and the algorithm continues with

13



Step 4.
7. Step 7: The value found in Step 5 is added to every element of each

covered row, and is subtracted from every element of each uncovered
column. The algorithm loops back to Step 5 without altering any stars,
primes, or covered lines.

8. Step 8: The assignment pairs are indicated by the positions of the
starred zeros in the success ratio matrix. If success ratio(i, j) is a
starred zero, then the element associated with row i is assigned to the
element associated with column j, is added and then divided by the
total number of successes to obtain the overall success ratio.

4.2. Memetic Algorithm (MA) Approach

A GA is a heuristic used to find approximate solutions to difficult-to-
solve problems by applying the principles of evolutionary biology such as
biologically-derived techniques of inheritance, mutation, natural selection,
and recombination (or crossover) [40]. GAs are implemented as an algorithm
in which a population of solutions (or individuals) to an optimization problem
evolve towards better solutions. This is enabled since each solution is a
chromosome that can undergo genetic modification.

The workflow selection problem has been encoded with the following chro-
mosome representation:

SLP NoS CS1 CS2 CS3 SLP NoS CS1 CS2 CS3 CS4 ...
2 3 13 26 31 1 4 18 23 37 42 ...

A gene within the chromosome consists of integers, whereby the first
number characterizes the SLP, the second characterizes the number of ser-
vices (NoS) that the workflow consists of, and the following integers are the
concrete services of the workflow. The first digit from the left of a concrete
service (CS) characterizes the abstract service number; the second describes
the specific concrete service implementation. The number of services the ab-
stract workflow consists of determines the length of the gene. For example,
the first workflow consists of 3 services, the second of 4 services, etc. The
service level guides the fitness calculations as described in the previous sub-
section, i.e., the fitness value is determined depending on the service level.
For this study, we consider workflows up to 5 services, having 10 concrete
services available for each of the 10 abstract services.

14



The algorithmic description of the MA approach is given in Algorithm
1. The process of the optimization starts with a population of completely
randomly generated individuals. In each generation, the fitness of each pop-
ulation member is evaluated. The fittest individuals, in terms of best fitness
value, e.g. from an archive population, where the best solutions found so
far are saved. As even the quality of solutions can range widely, particu-
larly in earlier generations, members compete in tournaments, with winners
forming a mating pool. Two parents are randomly selected from the pool,
and undergo cycle crossover [41] and mutation to form two children. This is
repeated until the new population of size N is filled. Then, for a given num-
ber of the population size (e.g., 10%), the individuals are randomly chosen
to perform the Munkres algorithm on this partial selection. If after apply-
ing the Munkres algorithm an improvement is achieved, then the individuals
are updated with the optimized selected services and the next generation
continues until the stopping criteria is met.

Configurable parameters in the implementation include number of gener-
ations as termination criterion, tournament size (the size of the tournament
used to select parents), crossover probability, effected positions (how many
positions are set to crossover in the crossover mask), and mutation probabil-
ity.

Algorithm 1 MA Algorithm
Input: Munkres portion n
initialize random population P
repeat

for i = 1 to P do
select parents from P
generate offspring applying recombination to parents selected
evaluate fitness

end for
run Munkres algorithm on n% of population and replace chromosomes

with higher fitness
until stopping criterion is satisfied

4.3. Memetic Particle Swarm Optimization (MPSO) Approach

PSO, as introduced in [42], is a swarm based global optimization algo-
rithm. It models the behavior of bird swarms searching for an optimal food

15



source. The movement of a single particle is influenced by its last movement,
its knowledge, and the swarm’s knowledge. In terms of a bird swarm this
means, a bird’s next movement is influenced by its current movement, the
best food source it ever visited, and the best food source any bird in the
swarm has ever visited.

PSOs basic equations are:

xi(t+ 1) = xi(t) + vij(t + 1) (6)

vij(t+ 1) = w(t)vij(t)+

c1r1(t)(xBestij(t)− xij(t))+

c2r2j(t)(xGBestj)− xij(t)) (7)

where x represents a particle, i denotes the particle’s number, j the di-
mension, t a point in time, and v is the particle’s velocity. xBest is the best
location the particle ever visited (the particle’s knowledge), and xGBest is
the best location any particle in the swarm ever visited (the swarm’s knowl-
edge). w is the inertia weight and used to weigh the last velocity, c1 is a
variable to weigh the particle’s knowledge, and c2 is a variable to weigh the
swarm’s knowledge. r1 and r2 are uniformly distributed random numbers
between zero and one.

PSO is commonly used on real and not discrete problems. In order to
solve the discrete workflow selection problem using the PSO approach, several
operations and entities have to be defined. This implementation follows the
implementation for solving the traveling salesman problem as described in
[31].

First, a swarm of particles is initialized. A single particle represents a
possible workflow, i.e., every particle’s position in the search space must
correspond to a possible workflow. The workflow selection is implemented as
a vector. Velocities are implemented as lists of changes that can be applied
to a particle (its vector) and will move the particle to a new position (a new
workflow). Further, minus between two particles, multiplication of a velocity
with a real number, and addition of velocities have to be defined. Minus is
implemented as a function of particles. This function returns the velocity
containing all changes that have to be applied to move from one particle to
another in the search space. Multiplication randomly deletes single changes

16



from the velocity vector, if the multiplied real number is smaller than one.
If the real number is one, no changes are applied. For a real number larger
than one, random changes are added to the velocity vector. When a velocity
is added to another velocity, the two lists containing the changes will be
concatenated.

MPSO is described in Algorithm 2. First of all, the particles are randomly
initialized, then each particle is evaluated by applying Equations (6) and (7).
If the new position is better than the particle’s best position, the particle’s
best value is updated. If the particle’s new position is better than the swarm’s
best position, then the swarm’s best position is updated. Each particle’s
velocity and position are updated, and then the Munkres algorithm is run
on a certain number of particles (e.g., 10%). If after applying the Munkres
algorithm an improvement is achieved, then the appropriate particles are
updated and the next generation continues until the stopping criterion is
satisfied.

The PSO implemented uses guaranteed convergence, which means that
the best particle is guaranteed to search within a certain radius, implying
that the global best particle will not get trapped in a local optima. Config-
urable parameters in the implementation include numbers of particles (size of
the swarm), number of generations, c1 (the weighting of the local knowledge),
c2 (the weighting of the global knowledge), w (the weighting of the last veloc-
ity), radius (defines the radius in which the global best particles searches ran-
domly), global best particle swarm optimization (determines whether global
best particle swarm or local best particle swarm optimization is used), and
neighborhood size (defines the neighborhood size for local best particle swarm
optimization).

5. Experiments and Results

5.1. Experimental Setup

All four algorithms were implemented in Java and experiments were de-
signed to measure the success ratio and the execution time. Measurements
include analysis of success ratio and execution time for different numbers of
generations, numbers of individuals used, numbers of particles used, different
variations of the weights in the fitness function, and the scalability of the ap-
proaches. Thirty runs were conducted in order to account for the stochastic
nature of the algorithms. The data set for the services and workflows were
randomly generated. Workflows were generated consisting up to five abstract

17



Algorithm 2 MPSO Algorithm
Input: Munkres portion n
Initialize the swarm of particles
repeat

for each particle p do
valuep ← evaluate(xp)
if value(xp) < value(pbestp) then

pbestp ← xp

end if
if value(xp) < value(gbest) then

gbest← xp

end if
end for
for each particle p do

velocityp ← updateV elocity()
xp ← updatePosition(xp, velocityp)

end for
apply Munkres algorithm on n% of particles and replace the particles

with higher fitness
until stopping criterion is satisfied

18



services, out of a pool of ten concrete services for each of the ten abstract
services, i.e., one hundred concrete services. Please note that we assume that
a concrete service can be used in several workflows, and no maximum bound
is given for simultaneous calls.

The following parameters have been chosen due to their superior per-
formance on preliminary runs of the workflow selection problem, balancing
between accuracy and execution time, also with regards to scalability. In ad-
dition, the parameters of GA and PSO were set in order for both algorithms
to achieve comparable success ratios and execution times.

For GA/MA, the parameters were set to:

• population size = 100

• number of generations = 1,000

• crossover probability = 60%

• mutation probability = 0.5%

• size of the tournament selection = 10

• number of positions that are selected for crossover = 10%

• selection of individuals applied on Munkres algorithm = 10%

For PSO/MPSO, the parameters were set to:

• number of particles = 100

• number of generations = 1,000

• w = 0.5

• c1 = 1.8

• c2 = 0.05

• radius = 5.0

• global best PSO

• selection of particles applied on Munkres algorithm = 10%

The experiments were conducted on an Intel Core 2 Duo (2.4GHz, 3MB
L2 cache) running the Java version 1.6.2 JDK runtime environment.

19



5.2. Results

The results are presented in the following order: first, the success ratios
and execution times of all algorithms are displayed showing the difference of
both measures of the non-memetic (GA and PSO) and the memetic (MA and
MPSO) algorithms; then MA and MPSO are further analyzed for different
numbers of generations; then MA is analyzed with regards to the numbers
of individuals used, and similarly MPSO with regards to the numbers of
particles used; then, the scalability of the approaches is investigated; followed
by an analysis for varying percentages of Munkres portions.

Table 2 shows the results of the success ratios and execution times for
all algorithms after 200 generations. The success ratios for both GA and
PSO are relatively low compared to MA and MPSO. Both, GA and PSO
achieving success ratios of around 87%, whereas MA and MPSO achieve
values around 98%. Comparing MA with MPSO shows that the success
ratio of MPSO is 98.7%, whereas MA has a success ratio of 98.3% after 200
generations. This clearly demonstrates that both MA and MPSO achieve
higher success ratios, however, this comes at a price of increased execution
times. GA and PSO run the 200 generations in around 53 seconds, whereas
MA and MPSO need around 89 seconds. Comparing MA with MPSO reveals
that MA has a slightly shorter execution time than PSO; measured are 88.6
seconds compared to 93.4 seconds for MPSO.

In order to find out whether the MA and MPSO algorithms really improve
the success ratio compared to their base algorithms, GA and PSO were run
for the same amount of time and the success ratio was measured. The results
are that the GA achieved a success ratio of 90.3% when run for 88.6 seconds
(as compared to MA achieving 98.3%), and PSO achieved a ratio of 90.8%
when run for 93.4 seconds (as compared to MPSO achieving 98.7%). This
confirms that the local search method within the memetic variants improve
the success ratio by a significant portion.

Table 2: Success ratios and execution times of all algorithms

Algorithms Success ratio [%] Execution time [s]
GA 86.8 53.5
MA 98.3 88.6
PSO 87.3 53.1
MPSO 98.7 93.4

20



Figure 3 shows the success ratios achieved by MA and MPSO for in-
creasing numbers of generations. Both algorithms start with success ratios
of around 86% after 10 generations, and achieving almost 100% after 200
generations.

�	�

���

�
�


��


��


	�


��



�

�� ��� ��� 
�� ��� ���� ���� ���� �
�� ���� ����

�
�
		


��
�

�
�
�
��
�
��

�
�

������

��� �����

Figure 3: Success ratios for increasing generations

The execution times shown in Figure 4 display almost a linear trend for
200 generations. As pointed out previously, MA scales slightly better than
MPSO needing less time for the optimization process.

��

���

���

���

���

	��


��

���

���


��

����

�� ��� ��� 
�� ��� ���� ���� ���� �
�� ���� ����

�
��
��
�
�
�
�	

�

�
��
��
�

�����
�����

��� �����

Figure 4: Execution times for increasing generations

Figures 5 and 6 show the success ratios and execution times for increasing

21



population sizes of MA, respectively. The success ratios range between 93.9%
and 94.8% for a population size of 20 and 200, respectively. A linear trend
can be seen in Figure 5 within the range of variation of ±0.04%. As for
the execution times, shown in Figure 6, it increases first linearly for small
population sizes, however, around a population size of 150 it shows a non-
linear trend.

���
�

�����

�	�

�	���

�	���

�	���

�	�	�

�	�
�

�	���

�	���

�	�
�

�� ��� 	�� ��� 
�� ���� ���� �	�� ���� �
�� ����

�
�
��
�
��
��
�
�
�
��
�
��

��
�
������	���

���

Figure 5: Success ratios for increasing population sizes

��

���

���

���

	��

����

����

����

����

�	��

����

�� ��� ��� ��� 	�� ���� ���� ���� ���� �	�� ����

�
�	
��
�
�


��

�

	
��
��
�

��������
��
�	�

���

Figure 6: Execution times for increasing population sizes

Figures 7 and 8 show the success ratios and the execution times of varying
particle sizes, respectively. The success ratios show a slight linear increase

22



with increasing particle sizes within the range of variation of ±0.03%. The
execution times seem to follow a similar trend as the ones for the MA algo-
rithm. For the first numbers of particle sizes we can observe a nearly linear
increase, whereas for particle sizes of 160 and higher a non-linear trend is
observed.

�	�

�	���

�	���

�	���

�	�	�

�	�
�

�	���

�	���

�	�
�

�	���

�
�

�� ��� 	�� ��� 
�� ���� ���� �	�� ���� �
�� ����

�
�
��
�



��
�
�
�
��
�
��

�����
��
	���

�����

Figure 7: Success ratios for increasing particle sizes

��

���

���

���

	��

����

����

����

����

�	��

����

�� ��� ��� ��� 	�� ���� ���� ���� ���� �	�� ����

�
�

	�
�
�
�
��
�




��
��
�

����	�
����
�

�����

Figure 8: Execution times for increasing particle sizes

Table 3 shows the different success ratios and execution times for both
algorithms for different Munkres portions ranging from 5% to 20%. In terms
of execution times, we can observe the high computational cost the Munkres

23



portion has on both algorithms. As for the success ratio, larger increases
can be seen first with smaller increases following. The number of generations
chosen was 50.

Table 3: Success ratios and execution times for increasing % of Munkres portion

Munkres MA MPSO
portion [%] Success Exec. Success Exec.

ratio [%] time [s] ratio [%] time [s]
5 89.4 25.8 90.1 27.6
10 93.6 31.1 94.3 33.8
15 95.2 47.9 96.6 49.8
20 97.9 66.4 98.0 69.7

In order to investigate the scalability of the approach, different workflow
sizes ranging from 5 to 100 workflows are analyzed. The number of gener-
ations chosen was only 50 in order to show the effect of decreasing success
ratios more evidently. Figure 9 shows how the success ratio decreases from
around 100% to 93.4% for both approaches. As seen before, MPSO achieves
slightly higher success ratios than MA, e.g., for a workflow size of 50, MPSO
scores 96.9%, whereas MA scores 96.7%.


��


��


	�



�


��


��



�

����

�� ��� ��� ��� ��� 	�� 
�� ��� ��� 
�� ����

�
�
		


��
��
�
�
�
��
�
��

���
�������
�

��� �����

Figure 9: Success ratios for increasing workflow sizes

The execution times for the Munkres, MA and MPSO are shown in Figure
10. Please note that the y-axis is in logarithmic scale and displays minutes. It

24



reveals Munkres O(n3) complexity and demonstrate that the Munkres algo-
rithm cannot be used on the workflow selection problem due to the enormous
execution times for larger problem sizes.

��

��

���

����

�����

������

�� ��� ��� ��� ��� 	�� 
�� ��� ��� 
�� ����

��
�

��

��
��

�

��
��


�
��

	��������
���

��� ����� ��������

Figure 10: Execution times for increasing workflow sizes including Munkres algorithm

6. Conclusions

This paper addressed the service composition task of workflows applying
the concept of memetic algorithms to GA and PSO. Memetic algorithms
are usually a combination of an evolutionary algorithm with a local search
method. In this paper, given that we have a combinatorial optimization
problem, GA and PSO have been combined with the Munkres algorithm,
which is an optimal combinatorial assignment algorithm.

In the area of service-oriented systems, the service selection process has
been done primarily using linear programming methods. However, given that
linear methods do not scale well with increasing problem sizes, i.e., workflow
sizes, an approximate method is paramount. The approximate methods such
as GA and PSO achieve an optimized assignment in a reasonable amount of
time. However, in order to further improve the solution quality, and tackling
the problems the approximate methods face, namely the balance between ex-
ploitation and exploration, we have combined GA and PSO with the Munkres
algorithm, therefore, achieving the benefits the memetic algorithms enjoy.

The results show that the memetic algorithms achieve higher success
ratios than their non-memetic counterparts. The execution times of the
memetic algorithms are as expected higher than the non-memetic algorithms.

25



Comparing the success ratio of both MA and MPSO showed that MPSO
has slightly higher success ratios than MA. Furthermore, analyzing MA for
increasing population sizes revealed a slight upward trend towards higher
success ratios. Similarly, looking at MPSO a slight improvement in success
rations is observed for increasing particle sizes.

The effect of different Munkres portions on both memetic algorithms was
investigated. In terms of execution times, the high computational cost the
Munkres portion places on both algorithms can be observed when the por-
tion gets larger. As for the success ratio, larger increases are seen first with
smaller increases following. This reveals that a good balance between im-
proved success ratio and execution time needs to be chosen.

Given that scalability is a very important issue in service-oriented en-
vironments, different workflow sizes were investigated. The success ratio
dropped substantially for larger workflow sizes. This shows that if the suc-
cess ratio needs to remain constant for different numbers of workflow sizes
the number of generations needs to be increased, as well as the population
size and particle size for MA and MPSO needs to be increased, respectively.
However, this comes at the cost of higher execution times, and therefore,
need to be traded off carefully.

Overall, a general recommendation is to make use of the memetic algo-
rithms for the workflow selection optimization since they achieve very good
success ratios with slightly larger execution times than the non-memetic al-
gorithms, by having an improved execution time as opposed to using an
optimal algorithm such as the Munkres algorithm.

Future work will expand this line of research by taking the following
constraints imposed by the real world setting of service-oriented systems
into consideration. First of all, service invocations of a particular service are
limited, and therefore, need to be taken into account. In addition, failure of
the service execution and recomposition needs to be addressed, and a solution
needs to be implemented and evaluated. Furthermore, since the workflows
and concrete services were fairly similar in terms of range, the effects of larger
variations on the QoS values of the workflow services need to be investigated.

References

[1] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Fergu-
son, “Web Services Platform Architecture: SOAP, WSDL, WS-Policy,

26



WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More”, Pren-
tice Hall, 1st edition, 2005.

[2] OASIS - Web Service Business Process Execution Lan-
guage 2.0, 2006. Available from: http : //www.oasis −
open.org/committees/tchome.php/wgabbrev − wsbpel. Last retrieved
April 2012.

[3] J.M. Zaha, M. Dumas, A.H.M. ter Hofstede, A.P. Barros, and G. Decker,
“Service Interaction Modeling: Bridging Global and Local Views”, Pro-
ceedings of the 10th IEEE International Enterprise Distributed Object
Computing Conference (EDOC06), Hong Kong, China, October 2006.

[4] W3C - Web Services Choreography Description Language (WS-CDL),
Nov. 2005. Available from: http : //www.w3.org/TR/ws− cdl − 10/.
Last retrieved April 2012.

[5] G. Denaro, M. Pezze, and D. Tosi, “Designing Self-Adaptive Service-
Oriented Applications”, Proceedings of the Fourth International Con-
ference on Autonomic Computing (ICAC07), Jacksonville, FL, USA,
2007.

[6] Y. Liu, A.H. Ngu, and L. Zeng, “QoS Computation and Policing in
Dynamic Web Service Selection”, Proceedings of the 13th International
Conference on World Wide Web (WWW04), New York, NY, USA, May
2004.

[7] S.-Y. Hwang, E.-P. Lim, C.-H. Lee, C.-H. Chen, “Dynamic Web Service
Selection for Reliable Web Service Composition”, IEEE Transactions on
Services Computing, pp. 104-116, 2008.

[8] M. El Hadad, J. Manouvrier, M. Rukoz, “TQoS: Transactional and QoS-
Aware Selection Algorithm for Automatic Web Service Composition”,
IEEE Transactions on Services Computing, vol. 3, no. 1, pp. 73-85, 2010.

[9] M. Klusch, P. Kapahnke, I. Zinnikus, “Hybrid Adaptive Web Service
Selection with SAWSDL-MX and WSDL-Analyzer”, Proceedings of the
6th European Semantic Web Conference on The Semantic Web: Re-
search and Applications, 2009.

27



[10] R. Sreenath and M.P. Singh, “Agent-Based Service Selection”, Journal
of Web Semantics: Science, Services and Agents on the World Wide
Web, vol. 1, no. 3, 2011.

[11] E.M. Maximilien and M.P. Singh, “Multiagent System for Dynamic
Web Services Selection”, Proceedings of the AAMAS Workshop on
Service-Oriented Computing and Agent-Based Engineering (SOCABE),
Utrecht, July 2005.

[12] C.-W. Hang and M.P. Singh, “Trustworthy Service Selection and Com-
position”, ACM Transactions on Autonomous and Adaptive Systems
(TAAS), volume 6, number 1, pp.5:15:17, February 2011.

[13] L. Vu and M. Hauswirth and K. Aberer, “QoS-based service selection
and ranking with trust and reputation management”, Proceedings of
the Cooperative Information System Conference (CoopIS), 2005.

[14] G. Fenza, and S. Senatore. “Friendly Web Services Selection Exploit-
ing Fuzzy Formal Concept Analysis.” Soft Computing - A Fusion Of
Foundations, Methodologies and Applications, 14.8:811-819, 2010.

[15] C. Lo, D. Chen, C. Tsai, K. Chao, “Service Selection Based on Fuzzy
TOPSIS Method,” Advanced Information Networking and Applications
Workshops, International Conference on, pp. 367-372, 2010 IEEE 24th
International Conference on Advanced Information Networking and Ap-
plications Workshops, 2010.

[16] H. Wang, C. Lee, and T. Ho, “Combining Subjective And Objective Qos
Factors For Personalized Web Service Selection.” Expert Systems with
Applications, 32.2:571-584, 2007.

[17] P. Wang, “Qos-Aware Web Services Selection With Intuitionistic Fuzzy
Set Under Consumers Vague Perception”, Expert Systems with Appli-
cations, 36.3:4460-4466, 2009.

[18] T. Yu, Y. Zhang, and K.J. Lin, “Efficient Algorithms for Web Services
Selection with end-to-end QoS Constraints”, ACM Transactions on the
Web, 1(1), 2007.

28



[19] D. Ardagna and B. Pernici, “Adaptive Service Composition in Flexible
Processes”, IEEE Transactions on Software Engineering, 33(6):369384,
2007.

[20] D. Schuller, J. Eckert, A. Miede, S. Schulte, R. Steinmetz, “QoS-Aware
Service Composition for Complex Workflows”, Proceedings of the 2010
Fifth International Conference on Internet and Web Applications and
Services, 2010.

[21] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, Q.Z. Sheng, “Qual-
ity driven web services composition”, Proceedings of the 12th interna-
tional conference on World Wide Web, 2003.

[22] G. Canfora, M.D. Penta, R. Esposito, and M.L. Villani, “An Approach
for QoS-aware Service Composition based on Genetic Algorithms”, Pro-
ceedings of Conference on Genetic and Evolutionary Computation, 2005.

[23] M.C. Jaeger and G. Muehl, “QoS-based Selection of Services: The Im-
plementation of a Genetic Algorithm”, Proceedings of Conference on
Communication in Distributed Systems, Workshop on Service-Oriented
Architectures and Service-Oriented Computing, 2007.

[24] H. Xia, Y. Chen, Z. Li, H. Gao, Y. Chen, “Web Service Selection Algo-
rithm Based on Particle Swarm Optimization”, Eighth IEEE Interna-
tional Conference on Dependable, Autonomic and Secure Computing,
pp. 467-472, Dec. 2009.

[25] S. Pandey, L. Wu, S.M. Guru, and R. Buyya, “A Particle Swarm
Optimization-Based Heuristic for Scheduling Workflow Applications in
Cloud Computing Environments”, Proceedings of the 2010 24th IEEE
International Conference on Advanced Information Networking and Ap-
plications (AINA ’10), 2010.

[26] S.A. Ludwig and T. Schoene, “Web Service Selection using Parti-
cle Swarm Optimization and Genetic Algorithms”, Proceedings of
Third World Congress on Nature and Biologically Inspired Computing
(NaBIC), Salamanca, Spain, October 2011.

[27] S.A. Ludwig, “Single-Objective versus Multi-Objective Genetic Algo-
rithms for Workflow Composition based on Service Level Agreements”,

29



Proceedings of IEEE International Conference on Service Oriented Com-
puting & Applications (SOCA 2011), Irvine, California, USA, December
2011.

[28] J. Munkres, “Algorithms for the Assignment and Transportation Prob-
lems”, Journal of the Society for Industrial and Applied Mathematics,
5:32, 1957.

[29] M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, “From Data Mining to
Knowledge Discovery: An Overview”, in Advances in Knowledge Dis-
covery and Data Mining, AAAI Press / The MIT Press, Menlo Park,
CA, pp.1-34, 1996.

[30] J. Cardoso, A. P. Sheth, J. A. Miller, J. Arnold, and K. J. Kochut,
“Modeling quality of service for workflows and web service processes”,
Web Semantics Journal: Science, Services and Agents on the World
Wide Web Journal, 1(3):281308, 2004.

[31] M. Clerc, “Discrete particle swarm optimization - illustrated by the trav-
eling salesman problem”, New Optimization Techniques in Engineering,
Springer, 2004.

[32] I.C. Trelea, “The particle swarm optimization algorithm: convergence
analysis and parameter selection”, Information Processing Letters 85,
pp. 317325, 2003.

[33] Z. Michalewicz, D.B. Fogel, “How to Solve It: Modern Heuristics”,
Springer-Verlag, 2002.

[34] J.-R. Zhanga, J. Zhanga, T.-M. Lokc, and M.R. Lyud, “A hybrid particle
swarm optimizationback-propagation algorithm for feedforward neural
network training”, Journal of Applied Mathematics and Computation,
vol. 185, no. 2, pp. 1026-1037, February 2007.

[35] M. Clerc, J. Kennedy, “The particle swarm explosion, stability, and
convergence in a multidimensional complex space”, IEEE Transactions
on Evolutionary Computation, 6:5873, 2002.

[36] F. Neri, ”Memetic Algorithms and Memetic Computing Optimization:
A Literature Review”, Vol. 2, No. 1, pp. 1-12, Swarm and Evolutionary
Computation, Feb 2012.

30



[37] H.W. Kuhn, “The Hungarian method for the assignment problem”,
Naval Research Logistics, 52(1), 1955.

[38] H.W. Kuhn, “The hungarian method for solving the assignment prob-
lem”, Naval Research Logistics Quarterly, 2:83, 1955.

[39] F. Bourgeois, J.C. Lassalle, “An extension of the munkres algorithm
for the assignment problem to rectangular matrices”, Commun. ACM,
14(12), 1971.

[40] M. Mitchell, “An Introduction to Genetic Algorithms (Complex Adap-
tive Systems)”, The MIT Press, ISBN 0-262-63185-7, 1998.

[41] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley and C. Whitley,
“A comparison of genetic sequencing operators”, In Rick Belew and
Lashon Booker, editors, Morgan Kaufman, Proceedings of the Fourth
International Conference on Genetic Algorithms, 69-76, San Mateo, CA,
1991.

[42] J. Kennedy and R. Eberhart, “Particle swarm optimization”, Proceed-
ings of IEEE International Conference on Neural Networks, 1995.

31


