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ABSTRACT
An overlay network is a virtual network that is built on
top of the real network such as the Internet. Cloud com-
puting, peer-to-peer networks, and client-server applications
are examples of overlay networks since their nodes run on
top of the Internet. The major needs of overlay networks
are content distribution and caching, file sharing, improved
routing, multicast and streaming, ordered message delivery,
and enhanced security and privacy. The focus of this pa-
per is the optimization of overlay networks using a Particle
Swarm Optimization (PSO) approach. However, since the
ever growing need for more infrastructure causes the number
of network nodes to grow significantly, the parallelization of
the PSO approach becomes a necessity. In this paper, the
MapReduce concept, proposed by Google, is adopted for
the PSO approach in order to be able to optimize large-
scale networks. MapReduce is easy to implement since it is
based on the divide and conquer method, and implementa-
tion frameworks such has Hadoop allow for scalability and
fault tolerance. Experiments of the MapReduce based PSO
algorithm are performed to investigate the solution quality
and scalability of the approach.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

Keywords
Evolutionary computation, overlay network optimization

1. INTRODUCTION
Overlay networks are networks that are built on top of

the physical network and rely on basic networking functions
such as routing and forwarding of the physical network. The
nodes of an overlay network are connected via logical links,
and these can span over multiple physical links. The nodes
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of the overlay network are expected to meet the following
requirements [1]:

• Provide the infrastructure to support the execution of
one or more distributed application(s).

• Support high-level routing and forwarding tasks neces-
sary in a network. The overlay network should provide
data-forwarding capabilities that are different from the
ones that are part of the Internet.

• Deployment should be across the Internet to allow
third parties to participate in the organization and op-
eration of overlay networks.

The main properties of overlay networks are adaptability
and robustness. These two features are the major driving
force behind the research of overlay networks. The aim of
this paper is the optimization of an overlay network in terms
of cost, performance, and reliability. In particular, the main
focus of the optimization is the application of data mirroring.

Optimization of overlay networks has received significant
attention. For example, the design of Service Overlay Net-
works (SON) is optimized by keeping reliability constraints
in mind [2]. Two subfunctions, maximum profit and mini-
mum cost are optimized using Lagrange multipliers.

Considering the scalability of an overlay network config-
uration, exact techniques are only applicable to solve very
small sizes of overlay networks. Among a broad set of mod-
ern heuristic and metaheuristic methods for optimization,
nature-inspired methods have emerged as promising tech-
niques. For example, network design problems are solved by
nature-inspired techniques since they are able to compute
approximate solutions within a reasonable amount of time
[3].

An Ant Colony Optimization approach is applied to the
AntNet routing protocol [4]. Agents are used to concur-
rently explore the network and exchange collected infor-
mation in the same way as ants explore the environment.
It is the ants indirect communication capability depositing
pheromone that is being exploited for the routing optimiza-
tion.

A multi-objective evolutionary algorithm called NSGA-II
was used in [5] to optimize a multicast overlay network. The
aim is to minimize the total end to end delay of a multicast
tree, and to maximize the link utilization.

A multi-swarm approach for neighbor selection in peer-
to-peer overlay networks is described in [6]. A multi-swarm
interactive pattern is introduced to match the dynamic na-
ture of P2P networks.

The reconfiguration of the topology and link capacities
of an operational network using genetic algorithms is de-



scribed in [7]. The reconfiguration is done in order to adapt
to changes of its operational conditions. For example, nodes
and links might become unavailable, the traffic patterns
might change, and the quality of service requirement and
priorities of different users and applications might change
suddenly.

Another genetic algorithm approach for the reconfigura-
tion in autonomic computing systems was proposed in [8].
The genetic algorithm approach, called Plato, uses evolu-
tionary processes to automate the decision-making process
of an autonomic system. Plato dynamically evolves target
reconfigurations at run time, and at the same time, bal-
ances the trade-offs between functional and non-functional
requirements to changes in environmental requirements and
conditions. In particular, Plato is designed for the recon-
figuration of a collection of remote data mirrors for diffus-
ing data, and minimizing operational costs, and maximizing
data reliability and network performance.

This paper closely follows the Plato approach, however,
instead of using a genetic algorithm approach, a Particle
Swarm Optimization (PSO) approach is implemented and
evaluated. In an earlier study [9, 10], we showed that PSO
outperforms the Genetic algorithm-based approach. How-
ever, since the scalability of the overlay network optimiza-
tion is limited by the computational capability of the com-
puter the algorithm is running on, a new parallelization ap-
proach is needed in order to enable the optimization of very
large overlay networks.

The growth of the internet has challenged researchers to
develop new ideas to deal with the ever increasing amount of
computing infrastructure. The number of networking nodes
is steadily increasing and therefore, more scalable algorithms
need to be developed. Parallelization of the optimization al-
gorithms is such option. Classic parallel applications that
were developed in the past either used message passing run-
times such as MPI [11] or PVM (Parallel Virtual Machines)
[12]. Both concepts utilize a rich set of communication and
synchronization constructs, however, these need to be ex-
plicitly programmed. In order to make the development of
parallel applications easier, Google introduced a program-
ming paradigm called MapReduce that uses the map and
reduce primitives that are present in functional program-
ming languages. The MapReduce implementation enables
large computations to be divided into several independent
map functions. MapReduce provides fault tolerance since
it has a mechanism that automatically re-executes map or
reduce tasks that have failed.

The MapReduce model works as follows. The input of the
computation is a set of key-value pairs, and the output is a
set of output key-value pairs. The algorithm to be paral-
lelized needs to be expressed as map and reduce functions.
The map function takes an input pair and returns a set of
intermediate key-value pairs. The framework then groups
all intermediate values associated with the same intermedi-
ate key and passes them to the reduce function. The reduce
function uses the intermediate key and set of values for that
key. These values are merged together to form a smaller set
of values. The intermediate values are forwarded to the Re-
duce function via an iterator. More formally, the map and
reduce functions have the following types:

map(k1, v1) → list(k2, v2)
reduce(k2, list(v2) → list(v3)

The main focus of this paper is to adapt Google’s MapRe-
duce paradigm for our Particle Swarm Optimization algo-
rithm applied to the optimization of overlay networks in
order to be able to optimize large-scale networks by making
use of parallel computing. This enables large-scale networks
above sizes of 500 nodes and 124750 links to be optimized.
Previous experiments revealed that it is possible to run the
optimization on a single computer for a network size of 500,
however, for a 550-node network the algorithm did not exe-
cute anymore.

The paper is outlined as follows. Section 2 describes re-
lated work in the area of optimization for which MapRe-
duce was adopted. In Section 3, the MapReduce-based PSO
overlay optimization approach is described. Section 4 de-
scribes the experimental setup, and in Section 5 the results
obtained are outlined. Section V contains the conclusions of
this study.

2. RELATED WORK
The MapReduce paradigm has found widespread use in

many fields of study. For example, it has been applied in
the areas of spatial data processing, information retrieval,
machine learning, data mining, bioinformatics, etc.

Since our paper addresses an optimization problem we
review related work in the area of optimization for which
MapReduce has been adopted. For example, MapReduce
has been applied to a differential evolution algorithm in [13].
The authors demonstrate how easily MapReduce can be ap-
plied by parallelizing the fitness evaluation of the algorithm,
which is the most time-consuming portion of the algorithm.
Two alternative approaches were investigated - population
based and data based. The experimental results suggested
that even though the population based approach is the bet-
ter way to proceed due to simplicity reasons, however, the
extra cost of I/O operations and system overhead signifi-
cantly reduces the benefits of parallelism.

In [14], MapReduce is applied to a variety of learning algo-
rithms including locally weighted linear regression, k-means,
logistic regression, naive Bayes, support vector machine, in-
dependent component analysis, principal component analy-
sis, gaussian discriminant analysis, EM, and backpropaga-
tion. The authors’ experimental results show a near to linear
speedup with increasing numbers of processors.

An asynchronous implementation of MapReduce was in-
vestigated in [15]. The paper investigates partial synchro-
nizations for iterative MapReduce applications to overcome
global synchronization overheads. The approach applies a
locality-based partitioning method. Local computations with
relatively frequent local synchronizations and with less fre-
quent global synchronizations are executed as mapper tasks.
The performance gains are demonstrated for PageRank, short-
est path and k-means.

The following related work is with regards to MapReduce
applied to nature-inspired algorithms. Since nature-inspired
algorithms are population-based algorithms for which all in-
dividuals in the population are evaluated by a fitness func-
tion that can be executed in parallel, this makes nature-
inspired algorithms perfect candidates for parallelization.
[16] shows how genetic algorithms can be modeled with the
MapReduce paradigm. The experiments conducted showed
the convergence and scalability of the approach on the One-
Max optimization [17] problem for up to 105 variables.



Another Genetic algorithm based MapReduce approach is
presented in [18]. The authors argue since a genetic algo-
rithm is iterative in nature, an extension to the MapReduce
model is necessary using a hierarchical reduction phase in
order to speed up the computation further.

A MapReduce Particle Swarm Optimization approach is
implemented to solve benchmark functions in [19]. The pa-
per describes how MapReduce is adopted without explicitly
addressing the parallelization details such as communica-
tion and synchronization. Their approach is applied on a
benchmark function and the authors note that the MapRe-
duce concept is not appropriate for easy benchmark func-
tions since the parallelization overhead is outweighing the
speedup gain obtained by parallelizing the function evalua-
tions.

An intrusion detection system based on a parallel particle
swarm optimization clustering algorithm using the MapRe-
duce methodology is proposed in [20]. Particle swarm opti-
mization is used for the clustering task and it shows that the
sensitivity problem of initial cluster centroids as well as pre-
mature convergence are avoided. The experimental results
on a real intrusion data set show that the proposed intru-
sion detection system scales very well with increasing data
set sizes. In addition, close to linear speedup is achieved by
improving the intrusion detection and false alarm rates.

The focus of this paper is to investigate the scalability
of a MapReduce implemented Particle Swarm Optimization
approach that is applied to the optimization of overlay net-
works. In particular, the scalability is investigated in terms
of increasing network sizes, increasing numbers of available
computational nodes, and increasing numbers of particles
(i.e., population).

3. MAPREDUCE-ENABLED OVERLAY
NETWORK OPTIMIZATION USING PSO

3.1 Overlay Network Optimization Formula-
tion

The optimization in this paper is based on the dynamic
reconfiguration of a collection of remote data mirrors. Data
copies of critical data, in remote data mirroring, is stored
at one or more secondary site(s) that prevent the protected
data from failures that may affect the primary copy [21].
Two design criteria for remote data mirroring are given; the
choice of the type of network link connection to the mir-
rors, and the choice of the remote mirroring protocol. Each
link in the network is associated by the cost, throughput, la-
tency and loss rate in order to determine the overall remote
mirror design performance [21]. Furthermore, there are two
types of remote mirroring protocols that affect the network
performance and data reliability, namely synchronous and
asynchronous propagation protocols.

The optimization design criteria are the same as for Plato
[8]. The main goal is the construction of an overlay network
for the data to be distributed to all nodes within the follow-
ing constraints: (1) Overlay network must remain connected
at all times; (2) Overlay network should never succeed the al-
located monetary budget; (3) The data should be distributed
as efficiently as possible, meaning the amount of bandwidth
consumed when diffusing data should be minimized.

The author of this paper has implemented three optimiza-
tion algorithms to evaluate and compare their performances.

Table 1: Link Propagation Methods

Time interval Avg. data batch
size in GB

0 0
1 min 0.0436
5 min 0.2036
1 hr 2.091
4 hr 6.595
12 hr 15.12
24 hr 27.388

An implementation of Genetic Algorithms as used in the
Plato implementation [8], an implementation of the network
selection algorithm inspired by Artificial immune systems,
and an implementation of a discrete Particle Swarm Opti-
mization approach have been implemented [20]. Since the
PSO-based implementation showed the best performance,
it is used in this study for the parallelization using MapRe-
duce. However, we first describe details about the algorithm
as well as the problem description of the overlay network op-
timization task before moving on to the description of the
MapReduce adoption.

The fitness function that is used as a measure is slightly
modified compared to the Plato approach [8]. The differ-
ences are that normalization of the overall fitness value is
done as to obtain a value between 0 and 1, as well as the
sum of weights for each part of the fitness function is 1.

The fitness function consists of three parts (as in Plato);
the first part evaluates the overlay network in terms of cost,
the second in terms of performance, and the third part evalu-
ates the reliability of the overlay network. The overall fitness
function (Equation 1) is the weighted average of all three fit-
ness portions. Please note that the sum of the weights needs
to sum up to 1 (Equation 2).

Foverall = w1 ∗ Fcost + w2 ∗ Fperf + w3 ∗ Frel (1)

3∑

i=1

wi = 1 (2)

Looking at the different fitness sub-functions, the fitness
sub-function for cost is given as:

Fcost = 1− cost
budget

(3)

where cost is the sum of operational expenses of all active
links, and budget is a user supplied value on the maximum
amount of money for an operating overlay network. The sub-
function for the performance consists of two parts: latency
and bandwidth as given below:

Fperf = 0.5 ∗ (1− latencyavg
latencywc

)

+0.5 ∗ ( bandwidthsys − bandwidtheff

bandwidthsys
+ bound) (4)

where latencyavg is the average latency over all active
links, and latencywc is the largest latency value measured



over all links in the underlying network; bandwidthsys is
the total available bandwidth across the overlay network
given the active links, and bandwidtheff is the total effective
bandwidth across the overall network after data has been co-
alesced, and bound is a limit on the best value that can be
achieved throughout the network.

The last fitness sub-function measures the overlay network
in terms of reliability consisting of two parts as given below:

Frel = 0.5 ∗ ( linksused
linksmax

) + 0.5 ∗ (1− datalosspot
datalossmax

) (5)

where linksused is the number of active links, and linksmax

is the maximum number of possible links given the network
structure; and datalosspot is the total amount of data that
could be lost during write coalescing using the propagation
methods as given in Table 1, and datalosswc is the amount
of data that could be lost during write coalescing using the
propagation method with the largest time window.

3.2 Particle Swarm Optimization Implemen-
tation

Particle Swarm Optimization (PSO) as introduced in [22],
is a swarm based global optimization algorithm. The algo-
rithm is inspired by the behavior of bird swarms searching
for an optimal food source. There are two standard kinds of
PSO variants: global best PSO and local best PSO. Since we
are using global best PSO, the movement of a single particle
is influenced by its last movement, its knowledge, and the
swarm’s knowledge. PSO’s basic equations are the following:

xi(t+ 1) = xi(t) + vij(t+ 1) (6)

vij(t+ 1) = w(t)vij(t) + c1r1j(t)(yij(t)− xij(t)))

+c2r2j(t)(ŷj(t)− xij(t))) (7)

where x represents a particle, i denotes the particle’s num-
ber, j the dimension, t a point in time, and v is the particle’s
velocity. yij is the best location the particle ever visited (the
particle’s knowledge), and ŷj is the best location any par-
ticle in the swarm ever visited (the swarm’s knowledge). w
is the inertia weight and used to weigh the last velocity, c1
is a variable to weigh the particle’s knowledge, and c2 is a
variable to weigh the swarm’s knowledge. r1 and r2 are uni-
formly distributed random numbers between zero and one.
The pseudo code of the global best PSO is given in Algo-
rithm 1 [23].

Since the overlay network optimization is a discrete prob-
lem, and PSO was designed for continuous problems, several
operations have to be defined. This discrete implementation
follows in part the implementation for solving the traveling
salesman problem as described in [24]. First, a swarm of
particles is initialized. A single particle represents one over-
lay network, i.e., every particle’s position in the search space
has to correspond to a possible overlay network. Velocities
are implemented as lists of changes that can be applied to
a particle (its vector) and that moves the particle to a new
position (a new overlay network). Changes are exchanges of
values of the overlay network. Furthermore, the difference
between two matches (particles), multiplication of a velocity
with a real number, and the addition of velocities have to be
defined. The difference is implemented as a function of par-
ticles which returns the velocity containing all changes that

Algorithm 1 PSO Algorithm
Initialize an nx-dimensional swarm S
repeat

for each particle i = 1, ..., S.ns do
if f(S.xi) < f(S.yi) then

S.yi = S.xi
end if
if f(S.yi) < f(S.ŷ) then

S.ŷ = S.yi
end if

end for
for each particle i = 1, ..., S.ns do

updateVelocity()
updatePosition()

end for
until stopping criterion is satisfied

Table 2: PSO parameters

Parameter Value

Number of particles 100
Number of iterations 500
Inertia weight 0.001
Weight of local knowledge 0.5
Weight of global knowledge 0.5

have to be applied to move from one particle’s position to
another in the search space. Multiplication randomly deletes
single changes from the velocity vector if the real number to
be multiplied is smaller than one. If the real number is one,
no changes are applied. For a real number larger than one,
random changes are added to the velocity vector. Table 2
shows the specific parameters chosen for the PSO implemen-
tation as identified by preliminary experiments.

3.3 MapReduce-based PSO Implementation
For the experiments in this paper, we are making use of

Apache Hadoop [25], which is the commonly used MapRe-
duce implementation. It is an open source framework that
supports data-intensive distributed applications and enables
applications to work with thousands of computational in-
dependent computers and petabytes of data. Hadoop Dis-
tributed File System (HDFS - storage component) and Map-
Reduce (processing component) are the main core compo-
nents of Apache Hadoop. HDFS allows high-throughput
access to the data while maintaining fault tolerance by cre-
ating multiple replicas.

As mentioned before, a MapReduce implementation con-
sists of three parts, the main, map and reduce functions.
The main function first reads the overlay network parame-
ters that are being used by the fitness function and writes
it to the HDFS in order to be used by the reduce function.
It then initializes the swarm by randomly initializing parti-
cles. Then the iteration loop of the algorithm starts by going
through each particle and the Hadoop framework calls and
executes the map and reduce functions, respectively. The
pseudo code in Algorithm 2 shows the main function.

MapReduce’s main operations are the map function and
the reduce function. As shown in Algorithm 3, themap func-
tion reads the global best network from the HDFS. Given the
global best network, the PSO update portion is applied in
order to generate a modified network. This network, which



Algorithm 2 Main Function

procedure Main(maxIteration)
network = readsOverlayNetworkParametersFromFile()
writesOverlayNetworkParametersToHDFS(network)
particles[] = initializeSwarm()
iteration = 0
while iteration ≤ maxIteration do

for all particles do
hadoopCallsAndExecutesMapFunction()
hadoopCallsAndExecutesReduceFunction()

end for
end while

end procedure

is the particle including the particle ID, is then emitted and
can be used by the reduce function.

Algorithm 3 Map Function

procedure Map(Key: ParticleID, V alue: Particle)
particleID=Key
particle=V alue
readGlobalBestFromHDFS()
applyDiscretePSOUpdates(particle)
emit(particleID, particle)

end procedure

The reduce function reads the global best network from
the HDFS first. Then, the network parameters are read
from the HDFS, and the particle’s fitness is calculated. Af-
terwards, the fitness value is then compared to the global
best fitness value. If the particle’s fitness is greater than the
current best, the particle is written to the HDFS, i.e., the
network is written to the HDFS. At the end, the particle ID
and the particle are emitted to be used in the next iteration.

Algorithm 4 Reduce Function

procedure Reduce(Key: ParticleID, V alueList: Particle)
particleID=Key
particle=V alue
globalBestF itness = readGlobalBestFromHDFS()
network = readNetworkParametersFromHDFS()
fitness = calculateFitness(particle,network)
if fitness ≤ globalBestF itness then

globalBestF itness = fitness
writeGlobalBestToHDFS(particle)

end if
emit(particleID, particle)

end procedure

4. EXPERIMENTAL SETTINGS
In this section, we describe the experimental setup of

the MapReduce based PSO overlay optimization algorithm.
First, the computing environment used is described, followed
by a description of the different networks used for the ex-
periments.

4.1 Computing Environment
The experiments were conducted on the Longhorn Hadoop

cluster hosted by the Texas Advanced Computing Center
(TACC)1. The TACC cluster consists of 48 nodes containing
48GB of RAM, 8 Intel Nehalem cores (2.5GHz each) which
results in 384 compute cores with 2.304 TB of aggregated

1https://portal.longhorn.tacc.utexas.edu/

Table 3: Different networks used for scaling experi-
ments

Number of nodes Number of links File size

100 4,950 187KB
200 19,900 775KB
300 44,850 1.8MB
400 79,800 3.1MB
500 124,750 4.9MB
600 179,700 7.1MB
700 244,650 9.7MB
800 319,600 12.7MB
900 404,550 16.1MB

1,000 499,500 19.1MB

memory. Hadoop version 0.21 was used for the MapReduce
framework, and Java runtime 1.7 for the system implemen-
tation. Furthermore, in order to provide a constant level
of parallelization, the number of mapper and reducer tasks
were set to the maximum, which are 8 per node since each
node contains 8 cores.

4.2 Network Sizes
Table 3 shows the different network characteristics used

for the scaling experiments. The number of nodes, number
of links, and the file size are listed.

5. RESULTS
This section shows the results obtained from the experi-

ments. Three different experiments were performed, the first
investigated the fitness and running time when the number
of iterations are scaled, the second looked at the fitness and
running time when the number of network nodes are scaled,
and the third investigated the running time and speedup
when different numbers of computing nodes are used. All
measurement points shown in the graphs are average values
of 25 independent runs.

5.1 Scaling of number of iterations
First of all, experiments were run to capture the solution

quality and the running time of the algorithm per iterations,
as shown in Figures 1 and 2, respectively. A 300-node net-
work was used, and the particle size was set to 100 using
the fitness equation with equal weights (as shown in Equa-
tion 1). Two computation nodes of the TACC environment
were used for these experiments. Figure 1 shows that the
optimization converges after around 270 iterations to the
optimum value of 8.33.

As for the running time, as expected we can see that each
iteration takes roughly the same amount of time resulting
in a linear trend (with only slight variations) for increasing
iterations.

5.2 Scaling of number of network nodes
The next set of experiments investigated again the solu-

tion quality and running time, however, this time not the
number of iterations were increased but the network sizes
were increased. The number of iterations was fixed to 500,
and network sizes between 100 to 1,000 with increments of
100 were used. The number of computational nodes used
was 2 for this experiment. In terms of fitness, the values
up to network sizes of 400 produce the optimal fitness of
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Figure 1: Fitness value versus number of iterations
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Figure 2: Running time versus number of iterations

0.833, however, for larger network sizes the fitness reduces
as shown in Figure 3. In order to achieve the optimal fitness
value the number of iterations would need to be increased
for networks of size 500 and higher.
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Figure 3: Fitness value versus number of nodes

In terms of running time, we can see the effect of increas-
ing numbers of network sizes in Figure 4. An exponential
trend is observed measuring 5.3 minutes and 195.2 minutes
for a network of 100 nodes and 1,000 nodes, respectively.

5.3 Scaling of number of computational nodes
Since speedup is the measure to evaluate parallel algo-

rithms, we used the following speedup equation:

Speedup =
T2

Tn
(8)
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Figure 4: Running time versus number of nodes

where T2 is the running time using 2 nodes, and Tn is the
running time using n nodes, where n is a multiple of 2.

For these sets of experiments, we increased the number of
computational nodes by 2 starting from 2 compute nodes up
to 16 compute nodes. The running time is measured and the
speedup is calculated by Equation 8. Experiments were run
for a 500-node network using 200, 400, and 600 particles, re-
spectively. The number of iterations were kept constant with
500. The black line in all speedup figures shows the ideal
speedup. The closer the measured speedup gets to the line,
the better the utilization of the parallel computing nodes is.
Figure 5 shows the results. As can be seen from the figure,
the speedup is worse for fewer numbers of particles achiev-
ing a speedup of around 6.5 for 200 particles, a speedup of
around 10 for 400 particles, and a speedup of around 12 for
600 particles. This demonstrates that the utilization of the
Hadoop framework is better when larger numbers of parti-
cles are used. This implies that the fitness evaluations of
the particles that are partitioned onto the different compute
nodes is more efficient when more computation is necessary.
Therefore, the control and communication overhead of the
Hadoop framework does not have as large as an effect for
larger numbers of particles.

Figure 6 shows similar behavior of running time and speed-
up (please note that the running times are this time in hours
and not in minutes as in Figure 5). However, a 1,000-node
network was used and initial experiments with the same
numbers of particles as for the 500-node network did produce
poor results. Therefore, the particle sizes of 400, 800, and
1,200 were used for this set of experiments. The interesting
observation, as seen in the figure, is that the speedup in all
cases turn out to be better as compared to the 500-node net-
work. Again, this can be explained with a better utilization
of the Hadoop framework resulting in higher speedup gains
when larger particle sizes are used. A speedup of around
10 is achieved with 400 particles, a speedup of almost 12 is
obtained when 800 particles are used, and the speedup for
1,200 particles is close to 14.

6. CONCLUSION AND FUTURE WORK
The focus of this paper was the parallelization of a Particle

Swarm Optimization (PSO) approach for the optimization
of overlay networks. For the parallelization, the MapReduce
paradigm was exploited. A MapReduce based PSO overlay
network optimization algorithm was implemented and ex-
tensive experiments were conducted to evaluate the solution
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(a) Running time for 200 particles
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(b) Running time for 400 particles
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(c) Running time for 600 particles
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(d) Speedup for 200 particles
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(e) Speedup for 400 particles
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(f) Speedup for 600 particles

Figure 5: Running time and speedup results for network of 500 nodes with 200, 400, and 600 particles

quality, running time and speedup for increasing numbers of
network nodes. Networks consisting of 100 up to 1,000 nodes
were investigated. The results revealed that the utilization
of the Hadoop framework increased with increasing network
sizes as well as with increasing numbers of particles used.
A general recommendation can be made that the larger the
network to be optimized, the larger the number of particles
used within the PSO algorithm has to be. Reflecting on the
particular speedup measurements conducted, good speedups
can be achieved using 10 or 12 computational nodes.

Further work includes the investigation of how long each
function per iteration runs in order to find out which of the
three portions (main, map, or reduce function) of the code
runs the longest. In addition, larger sizes of networks over
1,000 nodes could be optimized, however, running times of
several days are expected.
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