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Abstract—With the help of an electroencephalogram (EEG)
the electrical activity of the brain is measured, and this can
help identify chronic neurological disorders such as epilepsy.
Epileptic episodes are detected by monitoring patients in order
to provide preventive measures. Current research studies are
using a combination of time and frequency features to recognize
epileptic seizures automatically. In order to automatically detect
epileptic seizures, different machine learning approaches have
been used. Gradient boosting decision tree (GBDT) is a machine
learning technique that is known for its efficiency, accuracy,
and interpretability. In terms of performance of GBDT, many
machine learning tasks such as multi-class classification, learning
to rank, etc. have reported competitive performance. In this
paper, epileptic seizure recognition data is investigated and split
into a binary and multi-class data set for which the GBDT
method is applied. In addition, the SHAP (Shapley Additive
Explanations) method is used as an explanation tool to interpret
the machine learning models that are produced via training for
both the binary and the multi-class data set.

Index Terms—Epilepsy data set, Gradient boosting decision
tree algorithm, multi-class classification, Shapley Additive Ex-
planations (SHAP) method.

I. INTRODUCTION

Abnormal electrical activity is measured in the brain for
an epileptic episode. An episode usually occurs suddenly and
thus an automated way to monitor and detect this has to be
devised so that that the patient and neurologist can be warned
in advance [1]. One difficulty though is to detect the uncertain
time frequencies of epileptic episodes. These are unfortunately
not easy to detect.

Many different ways were looked into in order to directly
measure ‘epilepsy signals’ from brain signals. The single
photon emission computed tomography (SPECT), positron
emission tomography (PET), functional magnetic resonance
imaging (fMRI), and magnetic resonance imaging (MRI) [2]
are examples; with many research studies making use of
video-electroencephalograms (V-EEGs) [3], [4]. V-EEGs is
currently seen as the best approach to study epilepsy. The
reason being that the physiological processes of a seizure
are typically dynamic, non-stationary, and nonlinear, and thus
the differentiation of rhythmic changes from non-stationary
processes provides challenges to the analysis of the signals in
a EEG.

For the automation to detect EEG signals two tasks are
involved. The first is that the features need to be extracted
and the second is classification task. There are four categories

that the extracted features can be divided into, namely entropy
features, fractal dimension features, time-frequency domain
features, and statistical features. Most research studies have
used a combination of time and frequency features for the
epileptic seizure recognition.

In this paper, the epileptic seizure recognition data set is
investigated as a 2-class and 5-class problem. In particular,
a gradient boosting decision tree algorithm is used for the
classification part followed by the SHAP (Shapley Additive
Explanations) method to explain the output of the gradient
boosting decision tree models for both the binary and the
multi-class data set.

II. RELATED WORK

Most of the related research has focused on the Bonn data
sets [5]. In the field of brain science, a neural network (NN)
classification technique was applied [6]. Another approach
used support vector machines (SVMs) to identify epilepsy
patients. This work resulted in good recognition performance
as shown in [7], [8], [4]. Furtermore, another related approach
is the least squares support vector machine (LS-SVM) [9]. LS-
SVM classifies two-class seizure and non-seizure EEG signals.
An accuracy ranging between 98.0-99.5% was achieved using
radial basis function (RBF) kernel, with 99.5-100% achieved
with the Morlet kernel function.

An Ada-Boost classifier was applied in [10]. The approach
achieved good accuracy for epileptic seizures detection. Given
the no-free-lunch theorem [11], several different kinds of clas-
sification algorithms were applied to seizure detection. Exam-
ples of classification algorithms include K-nearest neighbors
(KNN) [12], Bayesian neural networks, and random forests
(RF) [13] with accuracy results ranging from 93% to 99.66%.
However, these approaches only used binary classification and
are time consuming and thus not practical for certain clinical
applications.

Given the data set used in this paper, directly related re-
search use deep learning methods to predict epileptic seizures
in [14]. The researchers used deep learning to distinguish the
signals ‘before’ and ‘after’ a seizure using held-out data from
all patients. A comparison is done with a random predictor
using a modified system to adjust for each patient’s feature
set. The prediction system could either choose ‘sensitivity’ or
‘time in warning’ for each patient and thus provide time and
functional seizure prediction.



A trained deep neural networks with EEG data for pre-
dicting the seizure is presented in [15]. Spectral, temporal
and spatial information was recorded for the analysis and the
study focused on cross-patients. The finding was that the deep
learning model generalizes very well base on the different
patient data provided.

The author of this paper has also investigated this particular
data set before by conducting a performance analysis of
different ensemble configurations [16] as well as a comparison
of a deep neural network ensemble method with the Choquet
Fuzzy Integral Fusion method [17].

In [18], traditional machine learning algorithms, such as
KNN (K Nearest Neighbors), Logistic Regression, and Linear
SVM were applied to predict seizures. In addition, CNN
(Convolutional Neural Network), RNN (Recurrent Neural Net-
works), and LSTM (Long Short-Term Memory) were used.

III. PROPOSED APPROACH

In this section, the methods applied are described. First,
gradient boosting decision tree (GBDT) algorithm is described
followed by the SHAP method, which is applied to the
resulting GBDT model run on the epileptic seizure recognition
data set.

A. Gradient Boosting Decision Tree - LightGBM

In this paper, a gradient boosting decision tree (GBDT)
algorithm is used as the classifier. GBDT represents an
ensemble model of decision trees whereby the most time-
consuming portion is the learning of the best split points for
each feature. There are two major algorithms, one is the pre-
sorted algorithm [19], [20], which enumerates all possible split
points on the pre-sorted feature values. The second algorithm
is the histogram-based algorithm N10,N11 which finds the
split points on the sorted feature values using histogram-based
buckets putting continuous feature values into bins, and then
uses these bins to construct feature histograms during training.
However, both algorithms have a high memory consumption
as well as long training times especially when big data sets
with a large number of features are involved.

LightGBM [21] is the implementation that addresses the
scalability and efficiency with two improvements. The first
improvement uses a gradient-based one-side sampling (GOSS)
and the second is the exclusive feature bundling (EFB). GOSS
works as follows making use of the information gain measure.
Instances with larger gradients will contribute more to the
information gain. Thus, for downsampling the data instances,
the accuracy of the information gain estimation should be
retained and thus those instances with larger gradients should
be retained and the one with smaller gradients should be
discarded. The EFB method makes use of the sparsity of real-
world data. Thus, the design of a lossless approach to reduce
the number of effective features can be done. In particular, in a
sparse feature space many features are exclusive, which means
that they rarely take nonzero values simultaneously. Thus,
such exclusive features can be bundled using an optimization
algorithm similar to the graph coloring problem solving the

optimization using a greedy algorithm with a constant approx-
imation ratio.

B. Shapley Additive Explanations - SHAP

The correct interpretation of a prediction model’s output
is a very important issue. The interpretation provides insight
into how a model may be improved, and facilitates the
understanding of the application/process being modeled. For
some application, simple models are often preferred since their
interpretation is easy to understand and to follow even though
the model might be less accurate than a more complex one.
However, with the growing need of big data processing, the
benefits of using complex models are needed but this results
in the trade-off between accuracy and interpretability of a
model’s output. Many different methods have been proposed
to address this issue [22], [23], [24], [25], [26], [27]. However,
how these different methods relate and which method to use
under which circumstances is still an open question. Thus,
Shapley Additive Explanations (SHAP) was introduced.

The SHAP is an extension of the Shapley value. In particu-
lar, it was inspired by several methods on model interpretabil-
ity, the SHAP value is used as a united approach to explain the
output of any machine learning model. SHAP exhibits three
benefits:

• Global interpretability: the collective SHAP values show
the contribution each predictor (either positively or nega-
tively) makes to the output variable. The variable impor-
tance plot shows the positive or negative relationship of
each variable with the output.

• Local interpretability: each observation has its own set
of SHAP values, which increases its transparency. Thus,
why a case receives its prediction and the contributions
of the predictors can be explained. Traditional variable
importance algorithms have only been able to show the
results across the entire population but not for each
individual case.

• Versatility: the SHAP values can be calculated for any
tree-based model, while other methods need to use linear
regression or logistic regression.

More information on the SHAP framework can be found in
[28].

IV. EXPERIMENTS AND RESULTS

A. Description of Data Set

The Epileptic Seizure Recognition data set [29] contain-
ing 4,097 data points was selected. Each data point is col-
lected from a EEG recording. Five-hundred individuals were
recorded to obtain the data. More details on the data set can
be found in [16].

This data set has been mostly used as a binary data set
where class 1 was classified as ‘epileptic seizure’, and classes
2, 3, 4 and 5 were categorized as ‘no epileptic seizure’. In this
paper, both the binary and also the 5-class data sets are used
to conduct experiments on.

The class distribution is as provided in Table IV-A totaling
in 8,627 samples/rows.



Class Value
1 1,735
2 1,732
3 1,693
4 1,744
5 1,726

Parameter Value
max bin 512
learning rate 0.05
boosting type gbdt
objective binary
metric binary logloss
num leaves 15
min data 100
boost from average True

B. Results: 2-Class Model Classification

Figure 3 shows the decision tree model using LightGBM
with the parameters as provided in Table IV-B. The model
tree has a depth of 11, which represent how the classification
is being made for unseen data. The tree model is quite natural
and can be easily understood.

Figure 1 and 2 show the ROC curve and the precision-
recall curve, respectively. The accuracy that was achieved by
the model was 85.02%.

Table I shows the precision, recall, f1-score and support
whereas Figure 5 shows the confusion matrix. As can be seen
in the table, the precision for the Yes class (having a seizure)
is 0.86, whereas a for the No class (not having a seizure) it is
0.84. The corresponding values for recall are 0.83 and 0.87,
respectively. The confusion matrix shows that 1,870 samples
were correctly classified for the Yes class whereas 2,042
samples were correctly classified for the No class. The other
two entries are false positives and false negatives, respectively.

The SHAP values reporting on the most important variables
are show in Figure 6. Please note that Class 0 represents
the Yes class and Class 1 represents the No class. The color
represents the SHAP value for each feature.

The figure shows the density scatter plot of SHAP values
for each feature highlighting the impact each feature has on
the model output based on the test set. The sum of the SHAP
value magnitudes are sorted across all samples in order to
identify the features with the biggest impact. For example,
we can see that Feature 167 has the biggest effect and thus
contributes most to the overall classification. As can be seen,
Feature 167 has a higher total model impact than Feature 14,
but for those samples where Feature 14 matters it has more
impact than Feature 28. Thus, Feature 14 strongly influences
a few predictions, while Feature 28 influences all predictions
by a lesser amount.

Fig. 1. ROC Curve of 2-Class Model

TABLE I
PRECISION, RECALL, F1-SCORE, AND SUPPORT FOR 2-CLASS MODEL

Precision Recall F1-score Support
Yes 0.86 0.83 0.84 2249
No 0.84 0.87 0.86 2352
Accuracy 0.85 4601
Macro avg 0.85 0.85 0.85 4601
Weighted avg 0.85 0.85 0.85 4601

Fig. 2. Precision Recall Curve of 2-Class Model
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Parameter Value
max bin 512
learning rate 0.002296
boosting type gbdt
objective multiclass
metric multi logloss
num leaves 15
max depth 10
feature fraction 0.4
bagging fraction 0.6
bagging freq 15

C. Results: 5-Class Model Classification

LightGBM was run with the parameters as provided in Table
IV-C.

Figure 4 shows the decision tree model for the 5-Class data
set. The tree has a depth of 9 and is compared to the 2-Class
model wider, i.e., branching factor is 3.

The confusion matrix of the 5-Class model is shown in
Figure 7. We can see the correct predictions in the diagonal of
the matrix. The other entries represent the missclassifications
based on the class label.

Fig. 5. Confusion Matrix of 2-Class Model

Table II shows the precision, recall, f1-score, and support
for the 5-Class model. The accuracy of the resulting model
was 71.76%, which is relatively good for a 5-Class model
outcome.

Figure 8 shows the SHAP values for the 5-Class model.
As also seen in Figure 6, each feature in the plot shows the
importance and also their range of effects over the data set.
The color in the plot shows how changes in the value of a

TABLE II
PRECISION, RECALL, F1-SCORE, AND SUPPORT FOR 5-CLASS MODEL

Precision Recall F1-score Support
1 0.95 0.93 0.94 575
2 0.62 0.55 0.58 575
3 0.60 0.63 0.62 575
4 0.76 0.75 0.76 575
5 0.65 0.72 0.69 575
Accuracy 0.72 2875
Macro avg 0.72 0.72 0.72 2875
Weighted avg 0.72 0.72 0.72 2875

feature effect the change the different classes of the seizure
data set. As can be seen, the SHAP values explain the margin
output of the model, which is the change in the log odds for
a Cox proportional hazards model. We can see that Feature 2
contributes most to the 5-Class model followed by Feature 14
and Feature 0.

V. CONCLUSION

This paper investigated the epileptic seizure recognition data
set, which was split into a binary and a multi-class data set
for which the Gradient boosting decision tree (GBDT) method
was applied. The analysis included accuracy, precision, f1-
score, support, and confusion matrix. Moreover, the decision
tree models that were produced from both data sets were
provided. The SHAP (Shapley Additive Explanations) method
was used in order to explain the output of the machine learning
models.

The models of the GBDT are easily interpretable since they
are in the form of a decision tree. The accuracy of the 2-Class
model was 85.02% and for the 5-Class model 71.76% was
achieved. However, for a researcher to identify which of the
features contains the most importance on the built model, the
SHAP summary plots were analyzed. The plots nicely show
the effect or contribution which feature makes on each class.
This allows for a better explanation ability of the built model
and also helps to guide decision makers in explaining the
machine learning model that was produced.
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