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Abstract Overlay networks are virtual networks of nodes and logical links built on
top of the existing network infrastructure,with the purpose of contributing new func-
tionality. There are many different solutions proposed to tackle a range of specific
needs such as content distribution and caching,file sharing, improved routing,multi-
cast and streaming, ordered message delivery, and enhanced security and privacy. In
this chapter, the focus lies on the optimization of overlay networks in terms of cost,
performance, and reliability. In particular, the main objective is the optimization of
data mirroring. Three different optimization approaches are introduced. The first
approach is based on a ”related work” implementation using Genetic algorithms,
the second makes use of artificial immune systems, and the third approach uses the
Particle swarm optimization approach. The three algorithms are implemented and
experiments are conducted to measure the overall performance, the behavior and
feasibility of network and link failures, as well as a scalability analysis is performed.

1 Introduction

Many different kind of overlay networking technologies have emerged in the past
years. Research and development of overlay systems have primarily focused on de-
veloping technologies that solve the challenges of reliability and efficient processing
of networks by providing a higher-level network that is built on top of the normal
network, the so-called overlay network. As the overlay network is built on top of
an existing network, it relies on the underlay network for basic networking function
such as routing and forwarding. The nodes in an overlay network are connected via
logical links and can span many physical links.
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In particular, the huge number of Internet users, estimated to almost 2 billions
to date [1], as well as the delivery of huge amounts of data and media has become
commonplace. Multimedia content such as videos is posing an increasing challenge
to the networks, as well as social collaboration and social media web sites, which
use and distribute large amounts of data on a daily basis. These developments of
the evolving web have a profound impact on the network requirements in terms of
performance and reliability. Therefore, it is essential that overlay networks have to
ensure an efficient and scalable service for Internet users.
An overlay network built on top of an existing network consists of a set of dis-

tributed nodes that are deployed on the Internet. The nodes of the overlay network
are expected to meet the following requirements [2]:

• Provide the infrastructure to support the execution of one or more distributed
applications.

• Support high-level routing and forwarding tasks necessary in a network. The
overlay network should provide data-forwarding capabilities that are different
from the ones that are part of the Internet.

• Deployment should be across the Internet to allow third parties to participate in
the organization and operation of overlay networks.

Overlay networks have many advantages that can be listed as such [3]:

• Overlay networks are incrementally deployable - The overlay network does not
require changes to the existing Internet infrastructure, only additional servers are
necessary. Once nodes are added to an overlay network, the control of paths of
data becomes possible with great precision.

• Overlay networks are adaptable - Even though the abstraction of an overlay net-
work constrains the packets to flow over a constrained set of links, the set of links
can be constantly optimized over metrics that the different applications require.

• Overlay networks are robust - Robustness is a result of the given increased control
and adaptable nature of the overlay networks. With a sufficient number of nodes
deployed, an overlay network should be able to route between any two nodes
in two independent ways, i.e., overlay networks are able to route around faults
occurring in the network.

• Overlay networks are customizable - Given that overlay nodes can be multipur-
pose computers, they can be easily equipped with whatever is necessary. To give
an example, overlay networks make extensive use of disk space that allows over-
lay networks to provide savings in terms of bandwidth when the content is not
consumed simultaneously in different parts of the network.

The main properties of overlay networks are adaptability and robustness. These
two features are the major diving force behind the research of overlay networks.
The aim of this paper is the optimization of an overlay network in terms of cost,
performance, and reliability. In particular, the main focus of the optimization is the
application of data mirroring. One ”related work” approach, as well as two addi-
tional approaches are compared in terms of performance and scalability. Part of this
research presented in this book chapter was published in [4].



Reconfiguration of Overlay Networks Using Nature-Inspired Algorithms 3

The remainder of this chapter is as follows: Section 2 describes related work;
Section 3 introduces the approaches used; in Section 4 the experimental setup and
results are described; and in Section 5 the findings are summarized.

2 Related Work

There are many different types of overlays that were developed meeting a range of
purposes, e.g. content distribution and caching [5], overlays used for file sharing
[6], improved routing [7], multicast and streaming [8], ordered message delivery
[9], and enhanced security and privacy [10].
In the next few paragraphs we list and describe in more detail particular over-

lay network implementations that are developed. A routing overlay network is an
overlay that controls and/or modifies the path of data delivery through the network.
Routing overlay networks [7] improve the performance and robustness of packet
delivery. This improvement is achieved by delegating the task of selecting paths
to users, who can choose among more reliable routes, less loaded routes, shorter
routers, or higher bandwidth routes. Overlay networks do not require support from
routers as other path selection methods do. The packets still traverse the underly-
ing routing infrastructure, however, their path is defined by the logical edges of the
overlay.
Another approach is called Overcast [11], which is an application-level multicast

system that can be incrementally deployed making use of the Internet infrastruc-
ture. Basically, the implementation consists of a collection of nodes that are placed
at strategic locations in an existing network, which in turn implement a network
abstraction on top of the network provided by the underlying network. Overcast
provides multicast that is scalable and reliable by using a simple protocol for build-
ing efficient data distribution trees that automatically adapt to changing network
conditions. The simulations conducted indicate that the Overcast provides roughly
70-100% of the total bandwidth possible, at a cost of somewhat less than twice the
network load.
Another well-known overlay network implementation is RON (Resilient Overlay

Network) [12]. RON is an architecture that allows distributed Internet applications
to detect path errors/outages and recover from them within seconds, thus improving
wide-area routing protocols that take several minutes to recover. It is an application-
layer overlay on top of the existing Internet routing substrate. RON monitors the
quality of the Internet paths in order to decide whether a route change of the packets
need to take place to improve the overall quality of the overlay network. RON was
able to improve the loss rate, latency, or throughput perceived by data transfers (5%
of the transfers doubled their TCP throughput, and 5% of the transfers had the data
loss reduced by a factor of 0.05).
Research concerned in particular with the optimization of overlay networks is

manifold. One special class of overlay networks is the Service Overlay Networks
(SON) [13]. The aim is to design the overlay with reliability constraints in mind.
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The assumption is that a SON could enter an inadmissible state for two reasons; (1)
due to insufficient resources to accommodate new connections, and (2) due to some
hardware malfunctioning. Two sub-functions, which are Maximum Profit (MP) and
Minimum Cost (MC) need to be optimized. Given the competing relationship be-
tween MP and MC, the aim is to ensure the systems’ operability. Their approach
is based on the Lagrange multipliers, which shows that MP and MC separately can
achieve the same network designs. The paper’s contribution is the provisioning of
guidelines to the formulation of the design of a reliable and economically optimal
SON.
Given that the optimization of an overlay network configuration is NP-hard, clas-

sic exact techniques are only applicable to solve very small instances of overlay
networks. Among a broad set of modern heuristics and metaheuristics methods for
optimization, nature-inspired methods have emerged as promising techniques for
solving for example network design problems since they are able to compute ap-
proximate solutions within acceptable range of execution times [14].
The research and developments of nature-inspired networking techniques have

fostered new techniques in networking, in particular due to their dynamic nature,
resource constraints and heterogeneity. In particular, an Ant Colony Optimization
approach was used in the AntNet routing protocol [15]. Their protocol uses agents
to concurrently explore the network and exchange collected information in the same
way as ants explore the environment. The main idea used from the Ants is their indi-
rect communication capability depositing pheromone for the routing optimization.
Multi-objective evolutionary algorithms, in particular, NSGA-II was used in [16]

to optimize a multicast overlay network based on two criteria; the first is to optimize
the total end to end delay of a multicast tree, and the second is to maximize the link
utilization.
A swarm-intelligence based approach was used in a layered overlay multicast

approach for routing web streams [17]. An architecture was adopted to improve ser-
vice capabilities, for satisfying the request of multi-constrained Quality of Service
(QoS) routing of large-scale multi-domain web streams. The approach is based on
meeting the uncertainty of the network status description, in order to find the QoS-
satisfied routes using an effective mathematical model.
A multi-swarm approach for neighbor selection in peer-to-peer overlay networks

is described in [18]. Their approach is inspired by the commonalities of P2P systems
and Particle Swarm in a dynamic environment. A multi-swarm interactive pattern
was introduced to match the dynamic nature of P2P networks.
In [19], genetic algorithms are applied to the reconfiguration of the topology and

link capacities of an operational network. It does this in order to adapt to changes of
its operational conditions, in which nodes and links might become unavailable, the
traffic patterns might change, and the quality of service requirement and priorities
of different users and applications might change suddenly.
Another example of a genetic algorithm approach is the Genetic-Algorithm-

Based Neighbor-Selection Strategy for Hybrid Peer-to-Peer Networks [20]. The
strategy enhances the decision process applied to transfer coordination. An investi-
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gation of the strategy revealed that it affects the system throughput and distribution
efficiency, as well as peer contribution, especially for low-connectivity peers.
Plato is a genetic algorithm approach to run-time reconfiguration in autonomic

computing systems [21]. The genetic algorithm approach uses the evolutionary
computation technique to automate the decision-making process of an autonomic
system. It enables a system to dynamically evolve target reconfigurations at run
time, and at the same time, it balances the trade-offs between functional and non-
functional requirements to changes in the environmental requirements and condi-
tions. In particular, their approach is applied to the reconfiguration of a collection
of remote data mirrors demonstrating it to be a good optimization method for dif-
fusing data, and minimizing operational costs; at the same time it maximizes data
reliability and network performance.
This paper closely follows the Plato approach using genetic algorithms to opti-

mize an overlay network based on cost, performance, and reliability. However, it
varies in the following two aspects (1) the fitness functions are normalized in order
to compare the three different measures, and (2) besides the use of genetic algo-
rithms, an algorithm based on Artificial Immune Systems, and another based on
Particle Swarm Optimization (PSO) are implemented and evaluated. As can be seen
in the evaluation section, the two additionally implemented algorithms performwell,
and in particular the PSO approach shows a better performance than the Genetic al-
gorithm approach. Furthermore, we also address the issue of scalability of the three
nature-inspired algorithms, and comment on the feasibility of the approaches for the
automatic reconfiguration of overlay networks.

3 Approaches

This research addresses the dynamic reconfiguration of a collection of remote data
mirrors. In remote data mirroring, data copies of critical data is stored at one or
more secondary site(s), which prevents the protected data from failures that may
affect the primary copy [22]. There are two important design criteria for remote
data mirroring; the first is to choose the type of network link connection to the
mirrors, and the second is to choose the remote mirroring protocol. Each link in the
network has a cost associated, as well as throughput, latency and loss rate which
determine the overall remote mirror design performance [22]. There are two types
of remote mirroring protocols that are synchronous and asynchronous propagation,
both affecting network performance and data reliability. In synchronous propagation
the secondary site applies each write before the write completes at the primary site,
and in asynchronous propagation updates get queued at the primary site and are
periodically propagated to the secondary site in a batch-fashion.
The optimization design criteria are the same as for Plato [21]. The main goal is

the construction andmaintenance of an overlay network for the data to be distributed
to all nodes while fulfilling the following requirements:

1. Overlay network must remain connected at all times;
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2. Overlay network should never succeed the allocated monetary budget;
3. The data should be distributed as efficiently as possible, meaning the amount of
bandwidth consumed when diffusing data should be minimized.

Three algorithms have been implemented in order to evaluate and compare their
performance. The first algorithm is an implementation of Genetic Algorithms as in
the Plato implementation [21], the second one is an implementation of the aiNet
algorithm inspired by Artificial immune systems, and the third algorithm is an im-
plementation of the discrete Particle Swarm Optimization approach.

Table 1 Link Propagation Methods

Time interval Avg. data batch size
in GB

0 0
1 min 0.0436
5 min 0.2036
1 hr 2.091
4 hr 6.595
12 hr 15.12
24 hr 27.388

The fitness function used as a measure for all three algorithms are slightly modi-
fied compared to the Plato approach [21]. The differences are that normalization of
the overall fitness value is done in order to have an overall fitness value in the range
of 0 and 1, as well as the sum of weights for each part of the fitness function is 1.
The fitness function consists of three parts (as in Plato); the first part evaluates the

overlay network in terms of cost, the second in terms of performance, and the third
part evaluates the reliability of the overlay network. The overallfitness function (Eq.
(1)) is the weighted average of all three fitness portions. Please note that the sum of
the weights needs to sum up to 1 (Eq. (2)).

Foverall = w1 ∗Fcost +w2 ∗Fper f +w3 ∗Frel (1)

3

!
i=1

wi = 1 (2)

Looking at the different fitness sub-functions, the fitness sub-function for cost is
given as:

Fcost = 1− cost
budget

(3)

where cost is the sum of operational expenses of all active links and budget is
a user supplied value on the maximum amount of money for an operating overlay
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network. The sub-function for the performance consists of two parts: latency and
bandwidth as given below:

Fper f = 0.5∗(1− latencyavg
latencywc

)+0.5∗(
bandwidthsys−bandwidthe f f

bandwidthsys
+bound) (4)

where latencyavg is the average latency over all active links, and latencywc is the
largest latency value measure over all links in the underlying network; bandwidth sys
is the total available bandwidth across the overlay network given the active links,
and bandwidthe f f is the total effective bandwidth across the overall network after
data has been coalesced, and bound is a limit on the best value that can be achieved
throughout the network.
The last fitness sub-function measures the overlay network in terms of reliability

consisting of two parts as given below:

Frel = 0.5∗ (
linksused
linksmax

)+0.5∗ (1− datalosspot
datalossmax

) (5)

where linksused is the number of active links, and linksmax is the maximum num-
ber of possible links given the network structure; and dataloss pot is the total amount
of data that could be lost during write coalescing using the propagation methods as
given in Table 1, and datalosswc is the amount of data that could be lost during write
coalescing using the propagation method with the largest time window.

3.1 Genetic Algorithm Implementation

Genetic algorithms [23] are a class of stochastic search algorithms based on bio-
logical evolution. In particular, the principles of the evolution via natural selection
are applied, employing a population of individuals that undergo selection, as well
as variation-inducing operators such as mutation and crossover. A fitness function
is used to evaluate individuals.
The genetic algorithm in short works as follows: a population is created with a

group of individuals that are created randomly. The individuals in the population are
then evaluated. The evaluation function, called fitness function, gives the individuals
a score based on how well they perform at the given iteration. Two individuals are
then selected based on their fitness, i.e., the higher the fitness, the higher the chance
of being selected. These individuals then ”reproduce” to create one or more off-
spring(s), and afterwards the offsprings are mutated randomly. This continues until
a suitable solution has been found or a certain number of iterations have passed.
Table 2 lists the parameters used for the implementation, which is identical to the

one proposed in Ramirez et al. [21] with the exception of the modified fitness func-
tion as explained above. Two-point crossover is employed, as well as Tournament
selection is used.



8 Simone A. Ludwig

Table 2 GA parameters

Parameter Value

Population size 100
Crossover Two-point
Crossover probability 0.1
Mutation probability 0.05
Selection method Tournament (k=2)

3.2 Artificial Immune System Implementation

An Artificial Immune System (AIS) models the natural system’s ability to detect
foreign cells in the body. It is a new computational paradigm with the ability to
perform pattern recognition that is mainly applied to anomaly detection.
There are different views on how natural immune systems have been developed.

These models include the classical view of lymphocytes that are used to distinguish
between self- and non-self, clonal selection theory, danger theory, etc. The imple-
mentation we have adopted and applied is based on the clonal selection theory. Ac-
cording to Burnet’s clonal selection theory [24], the immune system undergoes a
selection mechanism during the lifetime of the individual. The theory states that ac-
tivation of lymphocytes occurs when the binding with a suitable antigen happens.
Once activated, clones of the lymphocyte are produced expressing identical recep-
tors to the original lymphocyte that encountered the antigen. This process ensures
that only lymphocytes specific to an activating antigen are produced in large num-
bers.
Based on this biological background, the clonal algorithm was introduced by de

Castro and Timmis [25], named aiNet. In order to present the pseudo code of the
aiNet algorithm the following terms needs to be introduced:

• Network cell: individual of the population; each cell is a real-valued vector in an
Euclidean shape-space (in our case it is an integer-valued vector);

• Fitness: fitness of a cell in relation to an objective function to be optimized (in
our case the optimization is a maximization problem);

• Clone: offspring cells that are identical copies of their parent cell. The offspring
will further suffer a somatic mutation so that they become variations of their
parent.

The pseudo code of the slightly adapted (the concept of affinity was not used
as not applicable) optimization version of the aiNet algorithm is summarized as
follows:
The parameters used in the AIS implementation are stated in Table 3.
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Algorithm 1 AIS pseudocode
Randomly initialize a population of cells (the initial number of cells is not relevant)
while stopping criterion is not met do
Determine the fitness of each network cell.
Generate a number of clones for each network cell.
Mutate each clone proportionally to the fitness of its parent cell, but keep the parent cell.
Determine the fitness of all individuals of the population.
for each clone do
Select the cell with highest fitness and calculate the average fitness of the selected popula-
tion.

end for
end while

Table 3 AIS parameters

Parameter Value

Number of cells 2
Number of clones 6

3.3 Particle Swarm Optimization Implementation

Particle Swarm Optimization (PSO) as introduced in [26], is a swarm based global
optimization algorithm. The algorithm models the behavior of bird swarms search-
ing for an optimal food source. The movement of a single particle is influenced by
its last movement, its knowledge, and the swarm’s knowledge. PSOs basic equations
are:

xi(t+1) = xi(t)+ vi j(t+1) (6)

vi j(t+1) = w(t)vi j(t)+ c1r1 j(t)(xBesti j(t)− xi j(t)))
+c2r2 j(t)(xGBest j(t)− xi j(t))) (7)

where x represents a particle, i denotes the particle’s number, j the dimension, t
a point in time, and v is the particle’s velocity. xBest is the best location the particle
ever visited (the particle’s knowledge), and xGBest is the best location any particle
in the swarm ever visited (the swarm’s knowledge).w is the inertia weight and used
to weigh the last velocity, c1 is a variable to weigh the particle’s knowledge, and c2
is a variable to weigh the swarm’s knowledge. r1 and r2 are uniformly distributed
random numbers between zero and one.
PSO is usually used on continuous and not discrete problems. In order to solve

the discrete overlay network assignment using the PSO approach, several operations
and entities have to be defined. The implementation follows in part the implementa-
tion for solving the traveling salesman problem as described in [27]. First, a swarm
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of particles is required. A single particle represents one overlay network, i.e., every
particle’s position in the search space must correspond to a possible overlay net-
work. Velocities are implemented as lists of changes that can be applied to a particle
(its vector) and will move the particle to a new position (a new overlay network).
Changes are exchanges of values of the overlay network. Further, minus between
two matches (particles), multiplication of a velocity with a real number, and the
addition of velocities have to be defined. Minus is implemented as a function of
particles. This function returns the velocity containing all changes that have to be
applied to move from one particle to another in the search space. Multiplication ran-
domly deletes single changes from the velocity vector, if the multiplied real number
is smaller than one. If the real number is one, no changes are applied. For a real
number larger than one, random changes are added to the velocity vector.
The PSO implemented uses guaranteed convergence, which means that the best

particle is guaranteed to search within a certain radius, implying that the global best
particle will not get trapped in local optima. Table 4 shows the specific parameters
chosen for the implementation.

Table 4 PSO parameters

Parameter Value

Number of particles 100
Inertia weight 0.001
Weight of local knowledge 0.5
Weight of global knowledge 0.5
Radius 2
Neighborhood size 4

4 Experiments and Results

The three algorithms were tuned with the parameter values given in the previous
section. Since the GA and PSO implementation have probabilities involved, all pa-
rameters of the algorithms were set, so that the number of iterations needed were
kept constant, but at the same time the number of function evaluations is kept as
equal as possible. Furthermore, all experiments were conducted 25 times in order to
account for statistical variations.
The first set of experiments was performed measuring the accuracy of all ap-

proaches given different settings of the weights, comparing the different effects on
the accuracy. The second set investigates single link failures, and the third set eval-
uates complete network failures. The last set of experiments explores the effect of
increasing overlay network sizes, and the impact on the accuracy, as well as the
performance in terms of actual execution times.
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4.1 Overall Comparison of Approaches

Table 5 shows the results of the fitness scores of all approaches for the configuration
of a 25-node network using different weight combinations, thereby favoring cost,
performance or reliability. The values were taken at iteration 500. It can be seen that
the highest fitness score can be achieved with F2 and F3, which only consider the
cost and performance fitness sub-functions respectively (a smaller number of links
achieves a higher fitness score). The worst fitness score is observed for F4, when
optimizing the overlay network based on reliability given the trade-off between the
number of links and the potential data loss. Overall, PSO outscores the other ap-
proaches for all weight settings.

Table 5 Fitness function and fitness values (500 iterations)

Fitness function w1 w2 w3 Best fitness GA Best fitness AIS Best fitness PSO

F1 0.3 0.3 0.3 0.8233 0.8069 0.8333
F2 1 0 0 0.8910 0.9021 0.9129
F3 0 0 0 0.8922 0.8965 0.9087
F4 0 1 1 0.6037 0.6053 0.6086
F5 0.5 0 0 0.8978 0.8796 0.8999
F6 0 0.5 0.5 0.7394 0.7337 0.7500
F7 0.5 0.5 0.5 0.7301 0.7297 0.7499
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Fig. 1 Fitness of all approaches
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Figure 1 shows the fitness values plotted for a 25-node network for increasing
iterations. It can be observed that the PSO approach reaches the maximum fitness
score of 0.8333 at iteration 270, which is much earlier than the GA and AIS ap-
proaches. The GA approach takes 610 iterations, and the AIS approach requires
1420 iterations to reach the maximum fitness score. The fitness function F1 with an
equal weight distribution was used.

4.2 Investigation of Network and Link Failures

Figure 2 shows three complete reconfigurations of a 25-node overlay network. The
simulation runs the optimization every 2,500 iterations, due to an artificially induced
breakdown of the network. As can be seen in Figure 2, all three approaches, GA,
AIS and PSO, can reconfigure overlay networks and achieve the maximum fitness
score after around 1,200, 300 and 1,600 iterations respectively.
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Fig. 2 Reconfiguration of complete overlay network with 25 nodes

Figure 3 shows the reconfiguration of a 25-node network. The first evolution
shows the fitness trend when F1 is used (weights are all 0.3), after a failure occurs
the network switches the weights to w1=w2=0.25 and w3=0.5 in order to stress more
on reliability rather than an equal contribution of all three fitness sub-functions.
Even though the fitness score is lower with the second weight setting, however, the
network configuration is more stable to protect against future failures.
Figure 4 shows the fitness curves for successive link failures without reconfigura-

tion. It can be seen that the generation of new overlay network configurations work
fine until 84% of link failures occur, however, at the cost of reducing fitness scores.
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Fig. 3 Reconfiguration of 25-node network with varying weight distributions of fitness function

Decreasing fitness scores can be observed with the lowest of 0.34 when 80% of link
failures occur; after 84% an overlay network cannot be constructed anymore, and
therefore the reconfiguration needs to be started.
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4.3 Scalability Analysis

The scalability analysis investigates the performance impact with increasing net-
work sizes. We successively increase the number of networks starting with 10 nodes
all the way up to 60 nodes.
Figure 5 shows the fitness scores of the approaches for a network of size 60.What

can be seen, compared to Figure 1, is that even though PSO achieves larger fitness
improvements at the beginning, however, after around 2,700 iterations GA has al-
ready achieved the maximum fitness score, whereas it takes the PSO approachmany
more iterations to reach the maximum fitness score (89426 iterations on average).
The AIS approach does not scale very well. Even though it achieves the maximum
fitness score eventually; many more iterations are necessary compared to the PSO
and GA approaches.
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Fig. 5 Fitness of all approaches for network size of 60 nodes

Figure 6 shows the number of iterations it takes to achieve the optimal fitness
scores for all approaches. It can be seen that the number of iterations necessary to
achieve the optimum is first lower for PSO, but after a network size of around 40
nodes, GA reaches the maximum fitness values faster than PSO. For larger networks
(above 50 nodes) AIS shows a slightly better fitness score than PSO. Please note that
the y-axis is in logarithmic scale.
Figure 7 shows the same trend as Figure 6 in terms of execution time. However,

the two lines for PSO and GA cross approximately at 43 nodes, whereas for AIS
and PSO the cross happens after 50 nodes. Please also note that the y-axis is in
logarithmic scale.
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Fig. 7 Execution times in milliseconds of maximum fitness scores achieved (Figure 6)

5 Conclusion

This paper investigated three approaches for the reconfiguration of overlay networks
and could be used as a guide for overlay network construction and configuration.
The first approach was based on genetic algorithms used in literature; the second
was based on Artificial Immune Systems, and the third approach was based on a
discrete implementation of Particle Swarm Optimization.
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In summary, the experiments conducted show that for networks up to 40 nodes
the PSO approach achieves the maximum fitness score much faster than the GA and
the AIS approaches. PSO usually takes 270 iterations to reach the maximum fitness
value, whereas GA needs 610 iterations and AIS needs 1420 iterations to achieve
the same for a 25-node network.
Furthermore, the experiments regarding link and complete network failures

showed that the approaches are able to reconfigure the networks in a reasonable
amount of time. It takes a network of 20 nodes to be reconfigured by GA on average
376 ms, AIS 1035 ms, and PSO 51 ms. Again, PSO outperformedGA and AIS. For
the reconfiguration of a 60-node network, GA takes 12 min, AIS 18 min, and PSO
needs 21 min. Everything less than a minute is unacceptable for an automatic re-
configurationmethod. Of course, if sub-optimal reconfigurations are sufficient, then
for example the GA method can achieve 90% after approximately 245 iterations
which equates to an execution time of roughly 5.5 s; 95% can be achieved in 32 s.
Therefore, the automatic reconfiguration can be used if sub-optimal configurations
are sufficient.
In addition, the scalability analysis revealed that even though the performance of

PSO is better than GA for smaller networks (up to 40 nodes), however, networks
with a larger number of nodes are optimized faster with the GA approach as shown
in Figures 6 and 7, even though better sub-optimal fitness scores can be achieved by
PSO for a small number of iterations.
In conclusion, if the execution time is of essence then the PSO algorithm is the

better choice achieving overlay network reconfigurations within a shorter period
of time, as well as when larger network sizes are used and sub-optimal scores are
acceptable. However, if the fitness is paramount, then PSO should be used for the re-
configuration of networks up to 40 nodes, and for larger networks the GA approach
should be used.
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