
Memetic Algorithm for Web Service Selection 
 
 

 

Simone A. Ludwig 
Department of Computer Science 

North Dakota State University 
Fargo, ND, USA 

simone.ludwig@ndsu.edu 

 

 
 
 

ABSTRACT 

Due to the changing nature of service-oriented environments, the 
ability to locate services of interest in such open, dynamic, and 
distributed environments has become an essential requirement. 
Current service-oriented architecture standards mainly rely on 
functional properties, however, service registries lack mechanisms 

for managing services’ non-functional properties. Such non-
functional properties are expressed in terms of quality of service 
(QoS) attributes. QoS for web services allows consumers to have 
confidence in the use of services by aiming to experience good 
service performance in terms of waiting time, reliability, and 
availability. This paper investigates the service selection process, 
and proposes two approaches; one that is based on a genetic 
algorithm, and the other is based on a memetic algorithm to match 
consumers with services based on QoS attributes as closely as 

possible. Both approaches are compared with an optimal 
assignment algorithm called the Munkres algorithm, as well as a 
Random approach. Measurements are performed to quantify the 
overall match score, the execution time, and the scalability of all 
approaches. 

Categories and Subject Descriptors 

I.2.8 [Computing Methodologies]: Artificial Intelligence, 
Problem Solving, Control Methods, and Search, Heuristic 
methods. 

General Terms 

Algorithms, Measurement, Performance. 

Keywords 

Evolutionary computing, genetic algorithms, memetic algorithms, 
munkres algorithm, consumer-provider matching, quality of 
service. 

1. INTRODUCTION 
Even though the web was initially intended for human use, 
however, it can be said, that the web has evolved over the years, 
in particular with the introduction of web services. Web services 
introduced a higher-level functionality to make the web dynamic, 

as well as it enabled configurable software applications to 

improve productivity. Service-based applications consist of three 

components, which are provider, consumer and registry. Providers 
publish their services in registries, whereas consumers invoke the 
services after looking them up from the registry [1].  

A service-oriented environment has special characteristics that 
distinguishes it from other computing environments: (i) the 
environment is dynamic - indicating that service providers are 
non-persistent and may become unavailable unpredictably. This 
means the environment will change over time as the system 
operates. The same principle is applied for service consumers; (ii) 

the number of service providers is unbounded; (iii) services are 
owned by various stakeholders with different aims and objectives. 
There may be unreliable, insecure or even malicious service 
providers; (iv) there is no central authority that can control all the 
service providers and consumers; (v) service providers and 
consumers are self-interested. In a service rich environment, it is 
necessary to provide support for automated service discovery. 
This is necessary to enable direct interaction between software 

sub-systems (acting as consumers and providers). 

Due to the changing nature of service-oriented environments, the 
ability to locate services of interest in such an open, dynamic, and 
distributed environment has become an essential requirement. 
Traditional approaches to service discovery and selection have 
generally relied on the existence of pre-defined registry services, 
which contain descriptions that follow some shared data model. 
Often the description of a service is also very limited in such 

registry services, with little or no support for problem-specific 
annotations that describe properties of a service. 

Current service-oriented architecture standards mainly rely on 
functional properties, however, the service registries lack 
mechanisms for managing services’ non-functional properties. 
Such non-functional properties are expressed in terms of quality 
of service (QoS) parameters. QoS for web services allows 
consumers to have confidence in the use of services by aiming to 

experience good service performance, such as waiting time, 
reliability, and availability. It is difficult for service consumers to 
choose services from service registries, which contain hundreds of 
similar web services, given that the selection is only based on 
functional properties (even though they differ in the QoS values 
they deliver). In addition, QoS properties are dynamic in nature, 
and therefore, mechanisms are necessary for managing the 
dynamic changes of QoS properties [2].  

The selection of an appropriate service for a particular task has 
become a difficult challenge due to the increasing number of web 
services offering similar functionalities. Therefore, research was 
conducted to investigate different approaches to address this 
problem. This paper introduces two service selection approaches 
based on evolutionary computing. One approach makes use of a 
genetic algorithm, whereas the other is based on a memetic 
algorithm.  

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
BADS’11, June 14, 2011, Karlsruhe, Germany. 

Copyright 2011 ACM 978-1-4503-0733-8/11/06...$10.00. 

 



The paper is structured as follows: Section 2 introduces and 
discusses related work. In Section 3, the problem specification 
and the approaches and implementations are discussed. Section 4 
describes the measurement setup and discusses the results, and 
Section 5 concludes this paper with a comparison analysis. 

2. RELATED WORK 
In [3], a personalized selection approach for web services by 
partitioning user profiles to support different steps of interaction 
with services using techniques to personalize each subsequent step 
is proposed. The algorithm features the expansion of service 

requests by user-specific demands and wishes. Services that do 
not match a certain profile are discarded on the fly and equally 
useful results of alternative services are compared with respect to 
strategies and preferences provided by the user. 

Another web service selection scheme is proposed in [4]. The 
approach is based on user’s requirement of the various non-
functional properties and interaction with the system. The 
framework utilizes user preferences as an additional input to the 

selection engine and the system ranks the available services based 
on the requirement. 

A model of web service configurations and associated prices and 
preferences using utility function policies is described in [5]. The 
approach takes ideas from multi-attribute decision theory to 
develop an algorithm for optimal service selection. This approach 
represents configurable web service offers and requests in an 
ontology, and it makes use of declarative logic-based matching 

rules with optimization methods, such as linear programming, in 
order to solve it. 

A non-functional property-based service selection method, 
modifying the logic scoring preference method with ordered 
weighted averaging operators is introduced in [6]. The dynamic 
mechanism for evaluating metadata based on QoS criteria is 
proposed.  

A multi-agent approach based on an architecture and 
programming model in which agents represent applications and 

services is presented in [7]. The agents support considerations of 
semantics and quality of service parameters. The agents interact 
and share information, in essence creating an ecosystem of 
collaborative service providers and consumers. The approach 
enables applications to be dynamically configured at runtime in a 
manner that continually adapts to the preferences of the 
participants. The agents are designed to use decision theory. 

In [8], an approach is described that uses a tree structure, called 

quality constraint tree, to represent the requester’s variety of 
requirements on QoS properties having varied preferences. The 
QoS broker architecture facilitates the requesters to specify their 
QoS requirements to select qualitatively optimal web services. 
The algorithm ranks the functionality of similar web services 
based on the degree of satisfaction of the requester’s QoS 
requirements and preferences. 

An efficient service selection scheme to help service requesters 

select services by considering two different contexts, single QoS-
based service discovery and QoS-based optimization of service 
composition, is introduced in [9]. Based on QoS measurement 
metrics, the approach proposes multiple criteria decision-making 
and integer-programming approaches to select the optimal service. 

Research regarding the optimization of service selection to 
determine the optimal selection of services based on a measurable 
QoS metric is proposed by the following approaches.  

In [10], a broker-based architecture is proposed with a technique 
that models the problem in two ways. A combinatorial model and 

a graph model are proposed. The combinatorial model defines the 
problem as a multi-dimensional multi-choice 0-1 knapsack 
problem. The graph model defines the problem as a multi-
constraint optimal path problem. Both models are studied and 
compared with each other. 

The service selection algorithm proposed in [11] investigates the 
problem of composite web service selection. A utility function is 
proposed to evaluate all QoS parameters of each service based on 

the definition given in [10]. A multi-dimensional QoS composite 
web service is mapped to the multi-dimensional multi-choice 
knapsack. A fast heuristic algorithm is proposed for solving the 
selection problem. 

Evolutionary computing has also been introduced to the service 
selection problem, in particular for workflow problems, using a 
genetic algorithm (GA) approach. 

A GA approach for the selection of services using QoS 

requirements is introduced in [12]. A simple GA algorithm was 
implemented and tested in a simulation environment called 
SENECA.  

Another GA approach with a quick convergence method is 
proposed in [13]. In particular, the quickly convergent population 
diversity handling GA uses an enhanced initial population policy 
and an evolution policy based on population diversity and a 
relation matrix coding scheme. The integration of the two policies 

overcomes shortcomings resulting from the random nature of GA, 
such as slow convergence, large variations among running results, 
soaring overhead along with increasing sizes of service 
compositions. 

The aim of the research provided in this paper has a slightly 
different focus. First of all, only single service requests are 
investigated, and it is envisioned that the necessity of service 
selection support will increase in future, not only because the 
number of service-oriented applications are increasing, but also 

more and more services with similar functionality are becoming 
available on the web. Therefore, a robust, time-efficient and 
scalable assignment algorithm is needed to perform the task of 
service selection. One optimal algorithm, known as the Munkres 
algorithm, has a time complexity of O(n3), and therefore, does not 
scale well with increasing numbers of consumers and providers. 
Thus, approximate algorithms are necessary, which on one hand 
provide an optimized assignment, and on the other hand scale 

closely to linear with increasing numbers of consumer-provider 
pairs. 

3. SERVICE SELECTION APPROACHES 
The problem of service selection on the web consists of having an 
efficient algorithm that can match multiple service consumers and 

service providers efficiently, while optimizing multiple objectives 
(QoS parameters). The problem is twofold: firstly, multiple clients 
requesting similar services should be satisfied, and secondly, the 
assignment process of the service consumers and the service 
providers should be optimized. Please note that one consumer can 
only be matched with one provider. 



The QoS criteria in the context of services are execution price, 
execution time, reliability, reputation, and availability. The values 
of these QoS parameters range between 0 to 1. Each consumer 
provides the QoS values based on its requirement of how the 
request must be executed, and each service provides the value 

based on its task execution capability. The service provider has a 
value for each QoS parameter. The service consumer requests a 
service provider specifying an upper and lower value for each 
QoS parameter, whereby for some QoS attributes the lower or 
upper bound is preferred. In particular, the lower bound is 
preferred for execution price and execution time, and the upper 
bound is preferred for reliability, reputation and availability. 

In order to calculate how good and close matches are, the 

following equations are used (keeping in mind that several 
consumers are matched with several providers simultaneously): 

vi =

0 if pi cui or pi < cli

1
cui pi
cui cli

if lower bound preferred

1
pi cli
cui cli

if upper bound preferred

 

 

 
 
 

 

 
 
 

 (1) 

m =
1

5
vi

i=1

5

 (2) 

o =
1

n
m j

j=1

n

 (3) 

whereby o is the overall match score of the problem (and 

therefore the fitness function for the algorithms), m  is the match 
score for a consumer-provider pair, vi  is the match value, cui  

and cli  are the upper and lower value of the consumer 

respectively, pi  is the value of the provider, i  is the QoS 

parameter, and j  is the service number. 

Since we have several service consumers and equally numbered 
service providers, the aim is to match the consumer–provider pairs 
as closely as possible using a GA and a Memetic Algorithm (MA) 

approach. 

3.1 Munkres Algorithm 
The combinatorial optimization algorithm that solves the 
assignment problem in polynomial time is referred to as the 
Hungarian algorithm. The algorithm was developed by Harold 

Kuhn in 1955 [14,15]. Kuhn named it "Hungarian method" 
because two Hungarian mathematicians, Denes Koenig and Jeno 
Egervary, were the first who worked on the algorithm. In 1957 the 
algorithm was reviewed by James Munkres and he observed its 
(strongly) polynomial behavior, and therefore the algorithm was 
given the name Kuhn-Munkres algorithm or Munkres assignment 
algorithm [16,17]. The time complexity of the original algorithm 
was O(n4), however, it was later modified by Edmonds and Karp 

(and independently by Tomizawa) to achieve a O(n3) running time 
[18]. 

The Munkres algorithm is used to serve as a benchmark for the 
service selection as it is an optimal algorithm. The assignment 
problem, as formally defined by Munkres, is the following [16]: 

“Let rij be a performance ratings for a man Mi for job Ji. A set of 
elements of a matrix are said to be independent if no two of them 
lie in the same line (“line” applies both to the rows and the 

columns of a matrix). One wishes to choose a set of n independent 

elements of the matrix (rij) so that the sum of the element is 
minimum.”  

Similarly, the problem of matchmaking can be defined as an 
consumer-provider matrix, representing the match scores of each 
consumer with every other provider. The match score matrix is 

the matrix represented in Equation (3), where each element of the 
matrix represents the match score for an individual consumer-
provider pair. The Munkres algorithm works on this matrix, to 
assign the consumer requests to providers, as to achieve an overall 
maximum total match score. Please note that one consumer can 
only be matched with one provider. 

An implementation developed by Nedas in Java, which is freely 
available at [19] was slightly adapted and used to provide the 

benchmark for the service selection investigation, as it provides an 
optimal assignment of consumer and provider pairs. 

3.2 Genetic Algorithm (GA) 
GA is a global optimization algorithm that models natural 
evolution [20]. In GA, individuals form a generation. An 

individual corresponds to one match. The match is implemented 
as a vector, which is also referred to as a chromosome. 
Dimensions in the vector correspond to providers, and values 
correspond to consumers. Therefore, if the vector has value 3 at 
its 5th position (dimension), consumer 3 is matched with provider 
5. Every number representing a consumer can only be at one 
position in the vector, otherwise, the vector represents a non-valid 
match.  

At the beginning, the first population is randomly initialized. 
After that, the fitness of the individuals is evaluated using the 
fitness function (Equations (1)–(3)).  

After the fitness is evaluated, individuals have to be selected for 
paring. The selection method used is tournament selection. 
Always two individuals are paired, resulting in an offspring of 
two new individuals. In the pairing phase, a random crossover 
mask is used, i.e. the positions (dimensions) for which crossover 
occurs are selected randomly.  

If crossover occurs at certain positions (dimensions), individuals 
that are mated exchange their values at that position and the 
resulting individuals are used as offspring. The crossover has to 
make sure that the offspring presents a valid match. Therefore, if 
two values are exchanged, other positions in the two match 
vectors are usually effected as well.  

The offspring faces mutation with a certain low probability. After 
mutation, the fitness of the offspring is calculated. Then, either all 

individuals from the last generation compete against the whole 
offspring, or the offspring only compete with its corresponding 
parents.  

In this implementation, all individuals from the old generation 
compete with all individuals in the new generation. In order to 
implement this, all individuals are ordered by their fitness score, 
using a non-recursive advanced quicksort algorithm, which after 
sorting truncates the lower half. After the new generation is 

selected, the GA will start over, and continue with parent selection 
and crossover until a certain number of iterations is reached. 

3.3 Memetic Algorithm (MA) 
Evolutionary algorithms are not well suited for fine-tuning the 
search, in particular in complex combinatorial spaces, and 

therefore, researchers have developed hybridization methods to 



overcome this problem and to improve the efficiency of the search 
[21].  

The combination of using evolutionary algorithms as well as local 
search techniques was named Memetic Algorithms (MAs). MAs 
are basically an extension of evolutionary algorithms that apply a 
separate process to refine solutions by improving the fitness of the 
individuals with methods such as hill-climbing or simulated 
annealing.  

MAs were inspired by the models of adaptation in natural 
systems, in particular the combination of the evolutionary 

adaptation of a population with individual learning. GAs on the 
one hand and local search on the other hand, are captured within 
MAs, thus rendering a methodology that balances well between 
generality and problem specificity. The name of MAs was 
inspired by Richard Dawkins’ concept of a meme, which 
represents a unit of cultural evolution that can exhibit local 
refinement [22]. A meme represents a learning or development 
strategy [23].  

Memetic algorithms are also know as Hybrid Evolutionary 
Algorithms [24], Baldwinian Evolutionary Algorithms [25], 
Lamarckian Evolutionary Algorithms [26], Cultural Algorithms or 

Genetic Local Search. All techniques combine local search 
heuristics with the evolutionary algorithms’ operators. 
Combinations with constructive heuristics or exact methods may 
also be considered within this class of algorithms. In this research, 
we apply an exact method for the local search. 

For some problem domains, MAs have been shown to be both 
more efficient and more effective than traditional evolutionary 
algorithms with regards to requiring orders of magnitude fewer 
evaluations to find optima, and identifying higher quality 
solutions. In particular, for many combinatorial optimization 
problems, where large instances have been solved to optimality, 

and where other meta-heuristics have failed to produce 
comparable results, such as the quadratic assignment problem and 
the traveling salesman problem, MAs have proven themselves to 
be very effective [23].  

For the problem of matchmaking, the following local search 
technique is applied after the crossover and mutation phases have 
finished. For 10% of the population size, one individual is 
randomly chosen, and thereof 10% of the consumer-provider pairs 
are also randomly chosen to perform the Munkres algorithm on 
this selection. If after applying the Munkres algorithm an 
improvement is achieved, then that particular individual is 

updated with the optimized match pairs and the next iteration 
continues. 

4. EXPERIMENTS AND RESULTS 
All three approaches as introduced in the previous section were 
implemented. In addition, the random approach, which randomly 
matches consumers with providers, is used for comparison 
reasons.  

Experiments were designed to measure the overall match score 
and the execution time of all approaches. The GA and MA 
algorithms were further analyzed with regard to the number of 
iterations and the population size used. All measurement points 

shown are average results taken from 30 runs in order to 
guarantee an equal distribution and statistical correctness. The 
data sets for the consumers and providers were randomly 
generated and solved by Munkres, GA, MA, and the Random 
approach. All match scores shown are normalized with respect to 
the Munkres algorithm.  

The following parameters have been chosen due to their superior 
performance on the service selection problem, balancing between 
accuracy and execution time, also with regards to the scalability 
analysis.  

For the GA and MA, the parameters were set to: population size = 
400, iteration = 10, crossover probability = 60%, mutation 
probability = 0.5%, size of the tournament selection = 10, and 

number of positions that are selected for crossover = 10%. The 
MA has some specific parameters set for the local search 
component, which are individuals selected set to 10%, and the 
consumer-provider pair selection was set to 10%. 

The experiments were conducted on an Intel Core 2 Duo (2.5GHz, 
3MB L2 cache) running the Java Version 1.6.0 OpenJDK 
Runtime Environment. 

 

Figure 1. Match score of all algorithms 

 

Figure 1 shows the match score of all four algorithms, using 500 
consumer-provider pairs. As expected, the Munkres algorithm 
achieves a match score of 100%, whereby the MA comes quite 
close with 94.7%, followed by the GA with 83.9%, and the 
Random approach only scoring 80.3%. 

 

Figure 2. Execution time of all algorithms 

 

Figure 2 shows the execution time in seconds of all four 
algorithms, again using 500 consumer-provider pairs (i. e., 500 
consumers and 500 providers).  

 



As can be seen, Munkres, being an optimal algorithm, has the 
largest execution time, followed by the MA algorithm, then the 
GA algorithm, and at last the Random approach. Please note that 
the y-axis is in logarithmic scale. The execution time for Munkres 
was 210.7 seconds, for the MA it was 7.0 seconds, the GA ran 0.8 

seconds, and the Random approach needed not even 1 second to 
run. 

 

Figure 3. Match score vs. number of iterations of the GA and 

MA algorithms 

 

For the next experiments only both evolutionary algorithms are 
compared in terms of increasing numbers of iterations, as well as 
increasing population sizes.  

Figure 3 plots the match score against the number of iterations. As 
can be seen, the GA algorithm slowly but steadily increases the 
match score with every iteration, however, the MA algorithm 
shows a large increase at the beginning and is then flattening out 
with increasing numbers of iterations when approaching a match 
score of 100%. At iteration 100 the match score of MA is 99.0% 

and the match score of GA is 87.8%. The reason for the larger 
increase at the beginning is due to the local search component of 
the MA algorithm.  

 
Figure 4. Time vs. number of iterations of the GA and MA 

algorithms 

 

Figure 4 shows a linear increase in time for increasing numbers of 
iterations for the GA and MA algorithms, whereby the MA 

algorithm shows the larger increase, due to the additional time 
needed for the local search.  

Figures 5 and 6 show the match score and execution time for both 
evolutionary algorithms when increasing the population size.  

In Figure 5, a slight increase in match score for both algorithms is 
shown, whereby MA achieves a match score of 91.4%, and GA 
scoring 84.7% for a population size of 2000. 

 

Figure 5. Match score vs. population size of the GA and MA 

algorithms 

 

Figure 6 shows, as expected, a linear increase in time for 
increasing population sizes, showing a larger increase for the MA 
algorithm. 

 

Figure 6. Time vs. population size of the GA and MA 

algorithms 

 

Since this investigation is primarily concerned with the scalability 
of the algorithms, the match score and execution time with 
increasing numbers of consumer-provider pairs is explored, 
showing the results in Figures 7 and 8.  

The consumer-provider pairs were increased up to 600 in steps of 
50. Figure 7 displays the match score for increasing numbers of 
consumer-provider pairs showing relatively stable match score 
values for all algorithms, however, indicating a slight decrease 
with larger consumer-provider pairs. 



 

Figure 7. Scalability of algorithms in terms of match score 

 

Figure 8 shows the execution time of all algorithms, highlighting 
that the Munkres algorithm does scale in a cubic fashion, whereas 
the evolutionary algorithms and the Random approach scale 
linearly. 

 

Figure 8. Scalability of algorithms in terms of execution time 

 

5. CONCLUSION 
This paper investigated four approaches for the selection of 
services, and in particular the selection of multiple consumers and 
providers based on five QoS attributes. The scenario was 
envisioned, that in future the number of services will increase, and 
therefore, an efficient algorithm is necessary to provide a good 
selection scalability.  

The Munkres algorithm provides an optimal assignment, however, 
it has a computational time complexity of O(n3), and thus, does 
not scale very well. Therefore, the GA algorithm was 

implemented to see whether good match scores could be achieved. 
However, preliminary measurement results showed that GA’s 
match score was right in the middle, between the 100% achieved 
by the Munkres algorithm, and the 80% achieved by the random 
approach. In order to achieve a higher match quality, the MA 
algorithm was implemented and evaluated. As shown by the 
experimental results, the MA shows a good balance between 
match score and execution time by achieving a match score of 

94.7%; the GA scores 83.9%, and the Random approach only 

scores 80.3% for 500 consumer-provider pairs. In terms of 
execution time and scalability, the MA algorithm, even though 
needing extra time to perform the local search, when compared to 
the genetic algorithm, the MA still shows a linear behavior and is 
not much worse than the GA (for 600 consumer-provider pairs: 

Munkres: 366.6 seconds, MA: 11.4 seconds, and GA: 1.1 
seconds). 

Future work will follow three directions. First of all, since the 
consumer-provider pairs were fairly similar in terms of range, the 
effect of larger variations in the consumer-provider pairs will be 
investigated, likely achieving even higher match scores. Secondly, 
a non-dominated sorting GA, as well as a Particle Swarm 
Optimization approach will be investigated and compared to the 
current approaches. Thirdly, different selection matching 
functions will be experimented with.  

6. REFERENCES 
[1] Huhns, M.N., Singh, M.P. 2005. Service-Oriented 

Computing: Key Concepts and Principles. IEEE Internet 
Computing 9(1): 75-81. 

[2] Taher, L., El Khatib, H. 2005. A framework and QoS 
matchmaking algorithm for dynamic web services selection, 
Proceedings of the 2nd International Conference on 
Innovations in Information Technology (IIT’05).  

[3] Balke, W.T., Wagner, M. 2003. Towards personalized 
selection of web services, In Proceedings of the Int. World 
Wide Web Conf. (WWW). 

[4] Badr, Y., Abraham, A., Biennier, F., Grosan, C. 2008. 
Enhancing Web Service Selection by User Preferences of 
Non-functional Features, Proceedings of the 2008 4th 

international Conference on Next Generation Web Services 
Practices.  

[5] Lamparter, S., Ankolekar, A., Studer, R., Grimm, S. 2007. 

Preference-based selection of highly configurable web 
services, Proceedings of the 16th international conference on 
World Wide Web (WWW). 

[6] Yu, H.Q., Reiff-Marganiec, S. 2008. A Method for 
Automated Web Service Selection, Proceedings of the 2008 
IEEE Congress on Services. 

[7] Maximilien, E.M., Singh, M.P. 2004. Toward autonomic 
web services trust and selection. In Proceedings of the 2nd 
international Conference on Service Oriented Computing 
(ICSOC). 

[8] D'Mello, D.A., Ananthanarayana, V.S. 2010. Dynamic 
selection mechanism for quality of service aware web 
services, Journal of Enterprise Information Systems, Taylor 
& Francis, vo. 4, no. 1, pp. 1751-7575. 

[9] Huang, A.F., Lan, C., Yang, S.J. 2009. An optimal QoS-
based Web service selection scheme. Journal of Inf. Sci. vol. 
179, no. 19, pp. 3309-3322. 

[10] Yu, T., Zhang, Y., Lin, K. 2007. Efficient algorithms for 
Web services selection with end-to-end QoS constraints, 
ACM Transaction Web, vol. 1, no. 1, pp. 1-26. 

[11] Wang, R., Chi, C., Deng, J. 2009. A Fast Heuristic 
Algorithm for the Composite Web Service Selection, 
Proceedings of the Joint international Conferences on 
Advances in Data and Web Management. 

[12] Jaeger, M.C., Mühl, G. 2007. QoS-based selection of 
services: The implementation of a genetic algorithm, 



Proceeding of KiVS (Kommunikation in Verteilten 
Systemen) in Workshop: Service-Oriented Architectures und 
Service Oriented Computing. 

[13] Ma, Y., Zhang, C. 2008. Quick convergence of genetic 
algorithm for QoS-driven web service selection, Journal of 
Computer Networks, vol. 52, no. 5, pp. 1093-1104.  

[14] Kuhn, H.W. 1955. The Hungarian method for the assignment 
problem, Naval Research Logistics, 52(1). 

[15] Kuhn, H.W. 1955. The hungarian method for solving the 
assignment problem, Naval Research Logistics Quarterly, 
2:83. 

[16] Munkres, J. 1957. Algorithms for the Assignment and 
Transportation Problems, Journal of the Society for Industrial 
and Applied Mathematics, 5:32. 

[17] Bourgeois, F., Lassalle, J.C., 1971. An extension of the 
munkres algorithm for the assignment problem to rectangular 
matrices, Commun. ACM, 14(12). 

[18] Wikipedia, Hungarian Algorithm, last retrieved March 2011, 
http://en.wikipedia.org/wiki/Hungarian_algorithm. 

[19] Nedas, K. 2009. Munkres' (Hungarian) Algorithm, Java 
implementation, last retrieved on March 2009 from 
http://konstantinosnedas.com/dev/soft/munkres.htm. 

[20] Holland, J.H. 1975. Adaptation in Natural and Artificial 
Systems, University of Michigan Press, Ann Arbor. 

[21] Wolpert, D., Macready, W. 1997. No free lunch theorems for 
optimization, IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 
67-82. 

[22] Dawkins, R. 1976. The Selfish Gene, New York: Oxford 
Univ. Press. 

[23] Krasnogor, N., Smith, J. 2005. A Tutorial for Competent 
Memetic Algorithms: Model, Taxonomy, and Design Issues, 
IEEE Trans. On Evolutionary Computation, vol. 9, no. 5. 

[24] Vazquez, M., Whitley, L. 2000. A hybrid genetic algorithm 
for the quadratic assignment problem, Proc. Genetic Evol. 
Comput. Conf., D, pp. 135-142. 

[25] Ku, K.,Mak, M. 1998. Empirical analysis of the factors that 
affect the Baldwin effect, Lecture Notes in Computer 
Science, Parallel Problem Solving From Nature, pp. 481-490. 

[26] Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, 
W.E., Belew, R.K.,  Olson, A.J. 1998. Automated docking 
using a lamarkian genetic algorithm and an empirical binding 
free energy function, Journal Comput. Chem., vol. 14, pp. 
1639-1662. 

 


