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Abstract

Matchmaking is one crucial tasks in agent-based systems and describes locating and identifying the most suitable services
among all available services. This paper introduces matchmaking of mathematical services, whereby the matching is
based on semantics using OpenMath object descriptions of pre- and post-conditions. A matchmaking architecture for
mathematical services is described containing four matching algorithms which achieve a structural match, a syntax and
ontological match, an algebraic equivalence match and a value substitution match. The matchmaking architecture calculates
the match scores which give an indication of the quality of the matches. A case study explains in detail how the matching
process for all four matching algorithms works.

1 Introduction whereT refers to the task(' to the capability;n are inputs,

out are outputspre are pre-conditions angost are post-
The amount of machine-oriented data on the Web is increagnditions. What the condition expresses is that the signa-
ing rapidly as semantic Web technologies achieve greaigfe constrains the task inputs to be at least as great as the
up-take. At the same time, the deployment of agent/Welpability inputs (i.e. enough information), that the inverse
Services is increasing and together create a problem for seftationship holds for the outputs and there is a pairwise im-
ware agents that is the analog of the human user searclyiigation between the respective pre- and post-conditions.
for the relevant HTML page. Humans typically use Googlghis however leaves unaddressed the matter of establishing
but they can filter out the irrelevant and spot the usefighe validity of that implication.
so while UDDI (the Web Services registry) with keyword |n the MONET (Mathematics on the NET) [9] and
searching essentially offers something similar, it is a loOENSS (Grid-Enabled Numerical and Symbolic Ser-
way from being very helpful. Consequently, there has begges) [16] projects the objective is mathematical prob-
much research on intelligent brokerage, such as Infoslelgth solving through service discovery and composition by
[8], LARKS [14], and IBROW [3]. It is perhaps telling means of intelligent brokerag®athematicakapability de-
that much of the literature appears to focus on architectugegiptions turn out to be both a blessing and a curse: pre-
for brokerage, which are as such domain-independent, ra§ieé service description are possible thanks to the use of the
than concrete or domain-specific techniques for identifyimpenMath [10] mathematical semantic mark-up, but service
matches betweentaskor problem description and@pa- matching can rapidly turn into intractable (symbolic) math-

bility or service description. Approaches to matching in tkgnatical calculations unless care is taken.
literature fall into two broad categories:

e syntactic matchingsuch as textual comparison or th®  aScience Relevance
presence of keywords in free text.

« semantic matchingwhich typically seems to mean™ significant number of applications within eScience make
finding elements in structured (marked-up) data aft eofsymbolic anq numericallalgorithms, developed as part
perhaps additionally the satisfaction of constrain a project or obtained from third parties (such as numerical

specifying ranges of values or relationships betweg_ ranesh_fr(r)]m therl]\lumerllcal AIgonthmsIGrt())up, or apphc_?;]
one element and another. tions which use the Maple computer algebra system). The

complexity of such algorithms can vary from simple ma-
For many problems this is both appropriate and adequati, solving to more complex data analysis functions such
indeed it is not clear what more one could do, but in thg clustering or classification techniques. The ability to ac-
particular domain of mathematical services the actual maglass such algorithms as Web Services allows easy integra-
ematical semantics are cntlc_e}l to determining the smtab_llllti)bn of such capability within existing applications (while
ggr%hgpé"ﬁ:;t?f ége tﬁ?epo?ﬁ:“[tg] fk?r ttr:]: ff)alllsol\(l;/inTh(?OL%?tliJg%'—lso providing a loose coupling between the application and
ycap y 9 The numerical algorithm). Existing eScience applications

Tin > Cin ATout < Cout ATpre = Cpre A Chost = Tpost (1) are still embedding symbolic or numerical techniques di-



rectly within an application. However, the ability to sup3.2 Matchmaking Requirements
port such a loose coupling allows a user to select between
multiple providers offering the same or a “similar” set of

symbolic or numerical algorithms (services). A key driverl' we want sufficient input information in the task to sat-
of the work presented here is the ability to select between a isfy the capability, while the outputs of the matched ser-

number of possible algorithm implementations — assuming vice should contain at least as much information as the
that the MONET approach has been adopted as the descrip- task is seeking, and

tion technique for each algorithm. The approach therefore

has usage in a number of possible application areas, and 3§ the task pre-conditions should be more than satisfied by
not restricted to a particular scientific discipline. A “decom-  the capability pre-conditions, while the post-conditions

position” service that enables a combination of algorithms  of the capability should be more than satisfied by the
to be combined to produce a similar results is currently be-  post-conditions of the task.

ing implemented, and makes use of mathematical reasoning
techniques to support such decomposition. These constraints reflect work in component-based software
engineering and are, in fact, derived from [19]. They are also

) ) more restrictive than is necessary for our setting, by which
3 Mathematical Matchmaking we mean that some inputs required by a capability can read-

o ) ) ily be inferred from the task, such as the lower limit on a
3.1 Description of Mathematical Services numerical integration or the dependent variable in a sym-

In order to describe mathematics and to allow mathemb?-lic integration. Conversely, a numerical integration rou-
: : fihe might only work from0 to the upper limit, while the

ical objects to be exchanged between computer program\%}er limit of the problem is non-zero. A capability that
stored in databases, or published on the worldwide web an : ) .
emerging standard called OpenMath [17] has been in,[ir%;_sltche:s the task can be synthesised from the composition of

duced. OpenMath is a mark up lanauade for representing e invocations of the capability with the fixed lower limit
- 2P planguag P 9515, Clearly the nature of the second solution is quite differ-

semantics (as opposed to the presentation) of mathematé(r:ﬁlfrom the first, but both serve to illustrate the complexity

ggjti(cl\t/lsl_lnsa;;;argblgﬁ&ﬁhwsz rg32;¥12255zfészi:§6q?his domain. It is precisely this richness too that dictates
y - penivi b I P tﬁe nature of the matchmaking architecture, because as these
a small number of primitives. The definition of these m

be found in [17], for instanceOMA(OpenMath Applica- o simple examples show, very different reasoning capabil-

tion), OMI (OpenMath Integer)OMS(OpenMath Symbol) ities are required to resolve the first and the second. Further-
andéM\;(OpenMath Variable). Symbols are used to reprglore’ we believe that given the nature of the problem, it is
: , ) ' . . only very rarely that a task description will match exactly
sent objects defined in the Content Dictionaries (to be dis- 2 . .
S . . o -a capability description and so a range of reasoning mecha-
cussed), applications specify that the first child is a function . . : . )
. . ) . nisms must be applied to identify candidate matches. This
or operator to be applied to the following children whilst the sults in:

variables and integers speak for themselves. As an exam?oefe,
the expression + 1 might look like®

achieve matchmaking:

Requirement 1: A plug-in architecture support-

<om:OMA> ing the incorporation of an arbitrary number of
<om:OMS cd="arith1" name="plus"/> matchers.
<om:OMV name="x"/>
<om:OMI> 1 </om:OMI> The second problem is a consequence of the above: there
</om:OMA> will potentially be several candidate matches and some

means of indicating their suitability is desirable, rather than
where the symbgslus is defined in the&Content Dictionary picking the first or choosing randomly. Thus:
(CD)arithl . Content Dictionaries are definition reposito-

ries in the form of files defining a collection of related sym-  Requirement 2: A ranking mechanism is re-

bols and their meanings, together with varic@smmented quired that takes into account pure technical (as
Mathematical Propertiegfor human consumption) arfebr- discussed above in terms of signatures and pre-
mal Mathematical Propertie¢for machine consumption). and post-condition) and quantitative and qualita-

The symbols may be uniquely referenced by the CD name tive aspects—and even user preferences.
and symbol name via the attributed andname respec-

tively, as in the above example. Another way of thinking of . .
a CD is as a small, specialised ontology. 3.3 Matchmaking Architecture

IThroughout the paper, the prefinis used to denote the namespace2Ur matChmaking a_rChiteCture is shown in Figure 1 and
http://www.openmath.org/OpenMath comprises the following:
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Figure 1: Matchmaking Architecture

Figure 2: Matchmaker Client Application

e The client interface: this is employed by users to spec-
ify their service request. 3.3.1 Client

e The matchmaker: this contains a reasoning engine afgk Client applicatiof (shown in Figure 2) allows the user
the matching module. to specify the service request via entry fields for pre- and

e Matching Algorithms: which define the logic of thePost-conditions. The matchmak.er'returns the matches ip the
matching process. table at the bottom of the GUI listing the matched services

) ] ) ] ranked by similarity. Subsequently the user can invoke the
e Mathematical ontologies: including OpenMath Conseryice by clicking on the URL.

tent Dictionaries (CDs), GAMS (General Algebraic

Modeling Systemptc. 3.3.2 Matching Algorithms

e A registry service: which enables the storage of math- . . .
ematical services. Eurrently four matching algorithms have been implemented

within the matchmaker. These are structural match, syn-

o Mathematical Web Services: available on third partgx and ontological match, algebraic equivalence match and

sites, accessible over the Web. value substitution match. Service descriptions defined in
OpenMath allow descriptions of mathematical pre- and post-

The interactions of a search request are as follows:  conditions. The structural match compares the OpenMath

hierarchy at theag level, without inspecting the attribute

1. The user contacts the matchmaker. values. The syntax and ontological match algorithms go a

step further and compare tlMSlementxd andname at-

2. The matchmaker loads the matching algorithms speitibutes values. The algebraic equivalence match and value
fied by the user via a lookup in the UDDI registry. Isubstitution match perform mathematical reasoning on the
the case of an ontological match a further step is n@nathematical objects which make up the pre- and post- con-
essary. This is, the matchmaker contacts the reasotiéions.
which in turn loads the corresponding ontology. Structural Match The pre- and post-conditions are ex-

tracted and an SQL query is built to find the same OpenMath

3. Having additional match values results in the registgjructure of the pre-/post- conditions of the service descrip-
being queried, to see whether it contains services whiidns in the database.
match the request. Ontological Match This match is performed similarly,

however the OpenMath elements are compared with an on-

4. Service details are returned to the user via the matéplogy representing the OpenMath elements. The match-
maker. making mechanism allows a more effective matchmaking

process by using mathematical ontologies. Let us assume

The parameters stored in the registry (a database) are &t the part of the ontology given by the CD setnamel sat-
vice name, URL, taxonomy, input, output, pre- and podéfies: C D R 5 Q > Z 5 N > P. If the user query
conditions. Using contact details of the service from the regPntains the OpenMath element:

istry, the user can then call the Web Service and interact wi@m:OMS  cd="setnamel’name="Z'/>

it. Each component of the architecture is now described Nz //agentcities. cs.bath.ac.uk:8080/

more detalil. genss _axis/lGENSSMatchmaker/index.htm




. S ) @ -l@gams:GamsA
and the service description: (©) gams:Gamsal

<om:OMS cd='setnamel’ name='P’/> e-%gamsggams:g
The query finds the entitiedandP and determines the sim- f © samacamsiea
ilarity value depending on the distance between the two. We %g:mgg:mg;
must note the implications given in equation 1, which im- (8 gams:GamsAz
ply that a queries pre-conditions must be less general than G’%g:g;:g:mgg‘;
a capabilities (further to the 'right’ in the above ontology). ‘e ;?ﬁ:_g:ﬁ:;ﬂsf\ﬁ
Whilst a queries post-condition must be more general than a & (C) gams:Gamsh3
capabilities (further to the 'left’ in the above ontology). The il
above similarity value i$V = % = 0.5, wheren is the de- _(Dgams:tamsh4
. . @ '.:C)gams.GamsB
gree of separation of the concepts. For both the ontological (C) prablem:Factoisar
and structural match, it is necessary that the pre- and post- oozl

conditions are in some standard form. For instance, consider
the algebraic expressiart — 32, this could be represented
in OpenMath as:

Figure 3: GAMS Taxonomy Fragment

<om:OMOBJ><om:OMA>

<om:OMS cd="arith1" name="minus"/> however it has been proved [11] that in general this problem
omon is undecidable. Anoth h invol bstitution of
<om:OMS cd="arith1" name="power"/> is undecidable. Another approach involves substitution o
<om:8m|\/2ne/1me=$>'§1'{> r determined from the condition >~ S intor > @, and
oAy romNE subsequently proving their equivalence.
<om:OMA> Value Substitution Match With this approach we try to
<om:OMS cd="arith1" name="power"/> P
<om:OMV name="y"/> show tha_t Q - S = 0) by su.bstltutmg random values for
<om:OMI>2</om:OMI> each variable in the expression, then evaluating and check-
</om:OMA></om:OMA> . . . . .S .
<Jom:OMOBJ> ing to see if the valuation we get is zero. This is evidence

that @ — S = 0), but is not conclusive, since we may have
howeverz? —y? = (x+y)(z —y), leading to ontologically been unlucky in the case that the random values coincide
and structurally different markup. Both are correct, it justith a zero of the expression.
depends on what information is required, so there can in gen-
eral bg no canonical form. In ordpr to address the gbove %%.3 Service Registry
servation, we must look deeper into the mathematical struc-
ture of the expressions which make up the conditions. Md3ie mathematical service descriptions are stored in a
of the conditions examined may be expressed in the fordatabase comprising the following tables: service, taxon-

Q(L(R)) where:Q is a quantifier block, e.gvazJy s.t.---, omy, input, output, precond and postcond, and omsymbol.
L is a block of logical connectives, e.g., vV,=,---, Risa For the matching of pre- and post-conditions, the tables om-
block of terms, e.g=, <, >, #,- - -. symbol, precond and postcond are used. The other tables

In most cases, the quantifier block will just be a ranggve additional details about a service once the matching is
restriction. Sometimes it may be possible to wugmnti- done, in order for the user to select the appropriate service
fier eliminationto replace the quantifier block by an augfrom the returned list.
mented logical block. Once the quantifier elimination has
been _pe_rformed on the_: query descriptions and the serv§c§_4 Mathematical Ontologies and Reasoning Engine
descriptions, the resulting logical blocks must be converte
into normal forms. The normal form we find useful for ourhe subject of ontology is the study of the categories of
matching technique is Disjunctive Normal Form. That is ethings that exist or may exist in some domain [13]. An on-
ery logical block shall be converted into a Disjunction dblogy is a catalogue of the types of things that are assumed
conjunctions of terms. It is useful to note that a term is & exist in a domain of interest from the perspective of a per-
the general form1, > T where- is some relation i.e. ason who uses a language for the purpose of talking about
predicate on two arguments. In the case ffilaBndT are a domain. The types in the ontology represent the predi-
real valued, we may proceed as follows: we have two tereetes, word meanings, or concept and relation types of the
we wish to compar€) =~ Qr andSy > Sg, we first iso- language when used to discuss topics in the domain. An
late an output variable, this will give us terms- = @ and uninterpreted logic is ontologically neutral: It imposes no
r > S. There are two approaches which we now try in ordeonstraints on the subject matter or the way the subject is
to prove equivalence of >~ @ andr > S: characterised. Logic alone says nothing about anything, but

Algebraic Equivalence MatchWith this approach we try the combination of logic with an ontology provides a lan-
to show that the expressiod)(— S = 0) using algebraic guage that can express relationships about the entities in the
means. There are many cases were this approach will waltimain of interest. The matchmaking mechanism which al-



lows a more efficient service discovery by using mathemat exact match (2). Looking at the pre- and post-conditions
ical ontologies such as GAMS shown in Figure 3 are dseparately, it is first of all necessary to determine the ratio
scribed in a semantic language and a reasoning engine @fathe number of pre-conditions given in the query in rela-
inference the ontology [7]. Used for the service discovetipn to the number given by the actual service where some
process was OWLJesskB [2]. It is intended to facilitater all pre- or post-conditions match. To make sure that this
reading OWL files, interpreting the information as per OWtatio does not exceed 1, a normalisation is performed with
and RDF languages and allowing the user to query on thattime inverse of the sum of both values. This is multiplied
formation. It then inserts these triples as facts into the JEBBthe sum of the similarity values for each match of a pre-
knowledge base [1]. With some predefined rules, JESS camdition divided by the number of actual matches in order
reason about the triples and can draw more inferences. Thé&eep the overall score value between 0 and 1 (3). The
JESS API (Application Programming Interface) is intendeshme is done with the post-conditions (4). The importance
to facilitate interpretation of information of OWL files, andf the pre- or post-conditions is reflected in the weight val-
it allows users to query on that information. It leverages tlies. The match scores may be calculated using the following
existing RDF API to read in the OWL file as a collection ogéquations:

RDF triples. rg — Ma : Mp "
3.3.5 Matchmaker w 1Al
Myg=——2% . l4Ql  Zimh (5VA()) where 0 < wg <1 (3)
[Agl+1Asl |[Agl |A|

Algorithm 1 Matchmaking

B .
PrCQ: Pre-conditions of query Mp = wp L 1Pel  Eio1SVE(H)
PoCQ: Post-conditions of query Bl +1Bsl [Bgl IB|

where 0 < wp, <1 (4)

PrCS: Pre-conditions of service

PoC'S: Post-conditions of service

SV PrC': Similarity values of Pre-conditions
SV PoC': Similarity values of Post-conditions
MYV PrC': Match values of Pre-conditions
MYV PoC'": Match values of Post-conditions
MV O: Overall match score of service

S D: Service details

M D: Match details of service

PrCQ <« read-In_PreConds_-From_-GUI()
PoCQ « read_-In_PostConds_-From_GUI()
connect To_DB()
for all_service_-In_-DB do
PrC «— read-PreConds_-From_DB()
for PrC'S do
SV PrC « select_-Match_-Algo()
end for
MV PrC «— calculate_M atch_V alue()
PoCS «— read-PostConds_-From_DB()
for PoC'S do
SV PoC «+ select_Match_Algo()
end for
MV PoC «— calculate_M atch_V alue()
MV O « calculate_Match_Score()
SD «— retrieve_Service_Details()
M D « store_Match_Details()
end for
disconnect_.From_DB()

In the above,Myp, M4, Mp are the overall, the pre-
condition and the post-condition match scores respectively.
|{c}| denotes the number of conditions{a}, Ag and Ag

are pre-conditionsBg and Bg are post-conditions, the sub-
scripts andsS refer to the queries and services respectively.
A, B are a set of matched pre-conditions, post-conditions
respectively andb'V, (i), SVp (i) are the similarity values
for the ith matched pre-condition, post-condition respec-
tively.

4 Case Study

For the case study we consider all four matching modes. The
Factorisor service we shall look at is a service which finds all
prime factors of an Integer. The Factorisor has the following
post-condition:

<om:OMOBJ>
<om:OMA>
<om:OMS cd ='relationl’ name ='eq/>

return M D <om:OMV name ='n’/>
<om:OMA>
<om:OMS cd =‘fn_32’ name =’ap_ply_to_list’/>
The matchmaking algorithm is specified in Algorithm 1. <om:OMS cd =arithl’ name =times’/>

<om:OMV name ='Ist_fcts'/>

The pre- and post-conditions are read from the GUI first.  <om:oma>

Then a connection to the database is made. For all service

</om:OMA>
<(S]om:OMOBJ>

in the database, first the pre-conditions are read and for eac

the matching algorithm selected is applied — which returng/ieren is the number we wish to factorise atsdl_fcts

similarity value. For all similarity values of pre-conditionds the output list of factors.

a match value is calculated and stored. The same procedur®s the structural and ontological modes compare the

is then used for the post-conditions. For each service fieenMath structure of queries and services, and the alge-

match values for all pre- and post-conditions are calculate@ic equivalence and substitution modes perform mathe-

and stored together with the service details. matical reasoning, the case study reflects this by providing
The overall consideration within the matchmaking agwo different types of queries.

proach is to get a match score returned which should be beEor the structural and ontological mode let us assume that

tween 0 and 1, where 0 represents no match and 1 represé@siser specifies the following query:



<om:OMOBJ> e We then collect that number of random numbers, each

<om:OMA> .
<om:OMS cd ='fns2’ name ="apply_to_list'/> of size bounded b)(/ﬁ.

<om:OMS cd =arithl’ name ='plus’/> . . .
<om:OMV name ='Ist_fcts'/> e Then we calculate their product, from equation (5), this

</om:OMA> .
</om:0OMOBJ> gives a new value fon.

e We may now check equation (6). We see that it is true

For the str ral match, th ry woul litin .
e For the structural match, the query would be split into for every value irfst _fcts

the following OMcollection: OMAOMS$SOMS$SOMVand

g;xeér:n '(I)'Ldee:nte(l)tcshe Zg:ethoef tdhaeta;)k:)asstecc\;\gt(;titgfrgg/u Pwe try this for a few random selections, we obtain evi-
: ' . o : nce for the equivalence of equations (5) and (6).
in a value of 0.27778 using the equations described ear- quiv quat ©) ©)

lier.

e The syntax and ontology match works slightly differen? Related Work

as italso considers theluesof theOMsymbols. Inour a yariety of matchmaking systems have been reported in
example we have thre@Vsymbol structures. There ar§jie atyre, we review some related systems below.
two mstance.s ODMSa'nd. one oOMVFirst the query  The SHADE (SHAred Dependency Engineering) match-
and thelserwce description are compared SynFaCt'Cam/aker [6] operates over logic-based and structured text lan-
If there is no match, then the ontology match is called aqes. ~ The aim is to dynamically connect information
fpr the OMSstructure. The value of the content d'Céources. The matchmaking process is based on KQML
tionary (CD) and the value of the name are compargg, oy jedge Query and Manipulation Language) communi-
using the ontology of that particular CD. In this casgytion [15). Content languages of SHADE are a subset of
the resultis a match score of 9'22222' If Dbstruc- e (Knowledge Interchange Format) [4] as well as a struc-
ture of the service description is exactly the same as {ieo |ogic representation called MAX (Meta-reasoning Ar-
query then the structural match score is the same as{ffiecture for “X”). Matchmaking is carried out solely by
the syntax and ontology match. matching the content of advertisements and requests. There
is no knowledge base and no inference performed.

COINS (COmmon INterest Seeker) [6] is a matchmaker
! which operates over free text. The motivation for the COINS

The post-condition for the Factorisor service represents:

n =[] 1stfcts; where 1 = [1st_fcts| (5) is the need for matchmaking over large volumes of unstruc-
=1 tured text on the Web or other Wide Area Networks and the
A user asking for a service with post-condition: impracticality of using traditional matchmakers in such an

application domain. Initially the free text matchmaker was
Vil <i<|[lstfcts| = nmodlstfcts; =0  (6) implemented as the central part of the COINS system but it
turned out that it was also useful as a general purpose fa-

should geta rr?atclh tg th_'s Fac_torllsor serwceh. cility. As in SHADE the access language is KQML. The
Tﬁ cakrry OUt; € ar?e. raic equivalence match we use a pregktem for the Mechanical Analysis and Retrieval of Text
checker to show that: (SMART) [12] information retrieval system is used to pro-

e equation (5)= equation (6): This is clear since thecess free text. The text is converted into a document vector
q q ' sing SMART's stemming and “noise” word removal. Then

value of n may be substituted into equation (5) anﬁ1 . .
e document vectors are compared using an inverse docu-

the resulting equality will be true for each value in :
st fets ment frequency algorithm.

LARKS (Language for Advertisement and Request for
e equation (6)= equation (5): A slightly stronger ver-Knowledge Sharing) [14] was developed to enable interop-

sion of equation (6) which says that there are no ottfiability between heterogeneous software agents and had a
numbers which divide.. strong influence on the DAML-S specification. The sys-

tem uses ontologies defined by a concept language ITL (In-
To compute the value substitution match we must gather &+mation Terminology Language). The technique used to
idence for the truth of equations 5 and 6 by consideringcalculate the similarity of ontological concepts involves the
number of random examples, we proceed as follows: ~ construction of a weighted associative network, where the
weights indicate the belief in relationships. While it is ar-
e We first need to decide on the length of the list fayued that the weights can be set automatically by default,
our random example. A good basis would be to takieis clear that the construction of realistically weighted re-
[1st_fcts| = [logy(n)], this represents a bound onationships requires human involvement, which becomes a
the number of factors in the input number. hard task when thousands of agents are available.



InfoSleuth [8] is a system for discovery and retrieval of irsystems as well as information retrieval from textual doc-
formation in open and dynamically changing environmentsmentation of mathematical routines. Although our set of
The brokering function provides reasoning over the advéest cases is as yet quite small, the results are promising and
tised syntax and the semantics. InfoSleuth aims to suppweet foresee the outputs of the project being of widespread
cooperation among several software agents for informatiatility in both the e-Science and Grid communities, as well
discovery, where agents have roles as core, resource orammore generally advancing semantic matchmaking tech-
tology agents. A central service is the broker agent whiablogy. Although the focus here is on matchmaking math-
is equipped with a matchmaker which matches agents thatatical capabilities, the descriptive power, deriving from
require services with agents that can provide those serviaggantification and logic combined with the extensibility of
To apply this procedure an advertising agent has to registgrenMath creates the possibility for an extremely powerful
with the broker agent. The broker inserts the agent’s descigieneral purpose mechanism for the description of both tasks
tion into its broker repository. The broker can then executad capabilities. In part, this appears to overlap, but also

gueries by requesting agents. These queries are formulatedomplement the descriptive capabilities of OWL and, in

by agents who need other agents to fulfil their tasks.

much the same way as it was applied in MONET, we expect

The GRAPPA [18] (Generic Request Architecture fdo utilise OWL reasoners as plug-in matchers in the archi-
Passive Provider Agents) system allows multiple types tefcture we have set out.

matchmaking mechanisms to be employed within a system.
It is based on receiving arbitrary matchmaking offers al
requests, where each offer and request consist of multi?lje
criteria. Matching is achieved by applying distance func-
tions which compute the similarities between the individui
dimensions of an offer and a request. Using particular ag-
gregate functions, the similarities are condensed to a sin
value and reported to the user.
MathBroker is a project at RISC-Linz with some elements
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in common with those described here, including providim® eferences

semantic descriptions of mathematical services. It too uses
MSDL, however it seems that most of the matchmaking ig1]
achieved through traversing taxonomies, while actual un-
derstanding of the pre- and post-conditions is still an open
problem.

Most of the projects above have focused on providing a
generic matchmaker, capable of being adapted for a partifg]
ular application. However, the motivation for many such
projects has primarily been e-commerce (as a means to
match buyers with sellers, for instance). Some projects are
also focused on the use of a particular multi-agent interac-
tion language (such as KQML), to enable communication
between the matchmaker and other agents. Our approach,
however, is centered on the implementation of a match-
maker that is specific to mathematical relations. Similar t¢4]
GRAPPA, our matchmaker can support multiple comparison
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