
A Semantics-based Routing Scheme for Grid Resource Discovery

Juan Li, Son Vuong
Computer Science Department, University of British Columbia

{juanli, vuong}@cs.ubc.ca

Abstract

Grid technologies enable the sharing of a wide
variety of distributed resources. To fully utilize these
resources, effective resource discovery mechanisms are
necessities. However, the complicated and dynamic
characteristics of grid resources make sharing and
discovering them a challenging issue. In this paper, we
propose a peer-to-peer (P2P) based overlay network to
assist the efficient resource discovery and query. The
framework is based on the RDF metadata
infrastructure, allowing a rich and extensible
description of resources. To avoid flooding the network
with a query, we propose a comprehensive semantics-
based query forwarding strategy, which only forwards
queries to semantically related nodes. After the related
nodes have been located, the original RDF query is
used to do the final query and retrieval. Results from
simulation experiments demonstrate that this
architecture is scalable and efficient.

1. Introduction

The Information Service, one of the key services of
grids, provides resource information to users. To make
information available to users quickly and reliably, an
effective and efficient resource discovery mechanism is
crucial. However, grid resources are potentially very
large in number and variety; individual resources are
not centrally controlled, and they can enter and leave
the grid systems at any time. For these reasons,
resource discovery in large-scale grids can be very
challenging.

Traditionally, resource discovery in grids is based
mainly on centralized or hierarchical models. For
example, in the Globus Toolkit [6], users can get a
node’s resource information by directly querying a
server application running on that node, or by querying
dedicated information servers that retrieve and publish
an organization’s resource information. Although
interactions between these information servers are

supported, a general-purpose decentralized service
discovery mechanism is still missing.

To discover resources in more dynamic, large-scale,
and distributed environments, P2P techniques have
been used in grids. For example, [30] organizes
information nodes into a flat unstructured P2P network
and random-walk based methods are used for query
forwarding. Random-walks are not efficient in response
time for a very large system. [12] proposes a
hierarchical structure to organize information nodes to
reduce redundant messages. However, a well-defined
hierarchy does not always exist, and the global
hierarchy is hard to maintain in a dynamic environment.
Another application [31] randomly groups information
nodes into clusters to reduce the searching space,
which unavoidably increases the overhead of
publishing and updating of resources. Papers [22] and
[23] present DHT-based multi-attribute resource
discovery approaches, but these may incur either a high
traffic load for result intersection or large overhead for
multiple publication and update.

In this paper, we propose a semantics-based
decentralized model for grid resource discovery. It uses
RDF [4, 7] to represent both resources and queries. In
the framework, resource providers register their
resource information to local information nodes.
Information nodes connect with each other, forming a
P2P overlay. Resource searching is carried out only on
top of this P2P overlay. Since we focus on the query
routing over the information node overlay, we use the
terms “peer” or “node” to refer to an information node.
To support complex RDF queries without flooding the
whole network, our system uses a Resource Distance
Vector (RDV) routing algorithm. The principle behind
RDV routing is to use the content of a query and the
knowledge of the network to drive routing decisions.
The basic idea is to extract the building blocks from
RDF metadata and then summarize them to form a
compact structure. Based on this summarization, we
create a routing table to guide the query forwarding.
RDV routing is only used as a hint to find matching
nodes. After potential matching nodes have been

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

located, the original RDF query is then used to do the
final query and retrieval. When compared to
unstructured P2P applications oblivious of the resource
location, this routing strategy reduces both the query
overhead and query latency, and guarantees a higher
query hit ratio. Compared with DHTs, our approach
inherently supports rich queries, and requires no
explicit control over the network topology or data
placement. However, our system requires extra
overhead for maintaining the routing table. Fortunately,
the summarized routing index is lightweight and the
traffic for maintaining the routing information is low.

The remainder of this paper is organized as follows.
Section 2 describes the RDF resource representation,
summarization, and query. Section 3 explains the
semantic routing scheme. Section 4 gives the
experimental results. Related work is discussed in
Section 5. Section 6 concludes the paper.

2. Resource representation and queries

2.1. RDF metadata indexing

Metadata plays an important role for complex
queries that go beyond string matching. We use an
RDF metadata representation to encode resources. The
benefit of using an RDF representation is that the
information maps directly and unambiguously to a
decentralized model. Unlike traditional database
systems, RDF does not require all annotations of a
resource stored on one server. The ability for
distributed allocation of metadata makes RDF very
suitable for the construction of distributed repositories.
With RDF representations, the resource providers can
give resources detailed descriptions and the resource
requesters can customize their requirements to make
queries more precise and flexible.

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description
 rdf:about="http://somewhere/Java programming">
 <dc:title>Java programming</dc:title>
 <dc:creator>Ken Arnold</dc:creator>
 <dc:date>2002-09-01</dc:date>
 <dc:type>java programming language</dc:type>
 <dc:format>text/html</dc:format>
 <dc:language>en</dc:language>
</rdf:Description>
</rdf:RDF>

Figure 1. An example of RDF metadata

The basic building block of RDF is the triple which
includes a subject, a predicate and an object. The

subject is a resource about which the statement was
made. The predicate is a resource representing the
specific property in the statement. The object is the
property value of the predicate in the statement, which
can be either a resource identifier or a literal value.
Figure 1 shows a fragment of the metadata of an
electronic book. It uses the “Dublin Core” metadata
definition [24]. One example of a triple in this metadata
is: subject: <“http://somewhere/Java programming”>,
predicate: creator, and object: “Ken Arnold.”

2.2. Index summarization

We utilize a metadata index to provide improved
query capabilities, and to support more sophisticated
query routing. Every peer maintains a resource index
table, and peers exchange their indices. Queries can
then be distributed by relaying based on these indices.
However, exchanging RDF indices between nodes is
almost impossible because each node may maintain a
large number of resources. To reduce the overhead of
propagating the index information, we must make the
indices lightweight. Our strategy is to extract the
subject, predicate and object from the RDF metadata
and summarize them in a compact structure: a triple
filter, which is based on Bloom filters [8].

Bloom filters use hash functions to transform a data
set into a bitmap. Membership is tested by comparing
the result of the hashing on the potential numbers to the
vector. A triple filter includes three Bloom filters: the
subject filter, the predicate filter, and the object filter.
An RDF triple can be hashed to these three filters. For
example, in Figure 2 the RDF triple mentioned above is
hashed to a triple filter. In this example, the vector’s
size is eight bits, and three hash functions (h1, h2, h3)
are used to map an element to the vector. In reality the
size of the vector is much larger, and the number of
hash functions is always more.

Figure 2. A triple filter example

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

Every node maintains a local triple filter and several
aggregated neighbor triple filters. These filters form a
routing table that directs query forwarding. The
creation and maintenance of this routing table is
discussed later in Section 3.2.

2.3. Query

Many query languages, such as RQL [25] and
TRIPLE [26], have been developed for RDF. We use
RDQL [27] to query the metadata. RDQL is a query
language for RDF in Jena [28] models. It regards RDF
as triple data without schema or ontology information
unless explicitly included in the RDF source.

Some examples of RDQL queries include:
(1)SELECT ?x WHERE (?x, < dc:title >, "Java programming")
(2) SELECT ?x, ?types WHERE (?x, <dc:type>, ?types)
(3) SELECT ?author

WHERE (?x, <dc:type >, "program language") ,
 (?x, <dc:author>, ?author)

Here, we don’t cover how to resolve an RDQL
query with a local RDF database, which is well
understood for a local data store; we explain how to
route the query to the best destination peers. It is
straightforward to convert an RDQL query to a triple
sequence. We then match the query triple sequence
with the triple filters to determine where to forward the
query. The idea is this: if the query can pass a node’s
filters, then it will be forwarded to that node. Consider
a query (?x, <dc:title>, “java programming”), intended to
find a resource with title “java programming.” The
resource we are looking for should have a predicate
“dc:title” and an object “java programming.” So if a
node’s predicate filter and object filter match them, the
query will be forwarded to it. This filtering limits query
routing traffic by forwarding queries only to a small
number of related nodes. However, it cannot guarantee
that the query can be answered through the forwarding
path because the matched elements may belong to
different resources. Matching the triple sequence with
the filters relaxes the constraints of the original query.
Nevertheless, an advantage of this scheme is that the
filter can introduce only false positives but never false
negatives – the correct nodes will not be excluded.

This design has several advantages: The storage
space required is vastly reduced – compared to storing
the entire RDF metadata – and it is much more efficient
since queries need only to be matched with three small
filters instead of large, complex RDF documents. The
summarization also scales well as the number of triples
in the RDF indices increases. However, these benefits
are gained by sacrificing accuracy. Fortunately, strict
accuracy is not necessary for the routing process, since

the local RDF database is checked by the original
query in the end. The resource summarization works
only as a hint for forwarding the query to related nodes.
Our experiments show that this lightweight routing
index can effectively filter out a large number of
unrelated nodes from the query. Since Bloom filters
can only be applied to exact matches, they cannot be
used for range queries. To perform range queries we
can filter on other attributes and ran the range query on
the RDF database of destination nodes.

3. Overlay routing

3.1. Overview

How to route over the overlay network is one of the
central issues in determining the system’s efficiency
and scalability. We propose a so-called resource-
distance-vector (RDV) routing algorithm. It uses a
distance vector approach to route the query to the
nearest matching nodes. The traditional distance vector
approach is not scalable for locating unique nodes in an
Internet-like network, but this modified version is
extremely well suited for our resource discovery
problem. Every peer in the overlay network maintains a
resource index table. This table uses the triple filters
we mentioned before, and includes distance (in number
of hops) information. Peers exchange the resource
indices with their neighbors, and update relevant
entries in their table. The distance information is
updated whenever passing through a node. To reduce
false positives brought by the result of resource
information aggregation, we set a hop count, which we
call radius, to limit the number of hops the resource
information can travel. When a node receives a query
request, the algorithm chooses the shortest route to
forward the query. So, if there is more than one
provider supplying the same resource, then with high
probability, the algorithm will forward the request to
the nearest one. In addition, a “heuristic jump” method
is used to expedite the searching process by skipping
over the “barren” areas.

3.2. Routing table

As mentioned, each node maintains a RDV routing
table (RDVT). The RDVT contains both local and
neighbor triple filters. Besides resource information,
the triple filters also record the distance to the resource.
Figure 3 shows part of the network with the associated
RDVT for each node. For brevity, only one of the three
filters is shown here. Each element in the filter is
associated with a distance number: the minimum

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

distance to a matching resource. The first row of the
RDVT is the local filter containing local resource index.
For example, node A’s local filter contains a local
resource a, which is mapped to two positions (2, 4) in
the filter. We set the distance number of a local
resource as 0. The rest of the rows represent resources
accessible from neighbors. For example, in Figure 3(a),
A’s second row contains resources that can be reached
through the neighbor B (e.g., resource b(4,0) with 1
hop).

(a)

(b)
Figure 3. Maintaining routing indices

Figure 3 also illustrates the RDVT update process
when a new node C joins the network. Node C joins the
network by connecting to an existing node A in the
network. After the connection is established, node C
sends its resource indices to A. Similarly, A informs C
of all the resources A has knowledge of. Specifically, A
merges its local and neighbor vectors to one vector and
sends it to C. The aggregation is done by comparing
every element of the vectors, and selecting their
minimum value. The merged vector of A represents
resources accessible from A and their shortest distances
to A. A does not need to send more information as C
does not need to know the precise location of these
resources, but only that they can be accessed through A.
After C receives the merged vector from A, it adds 1
hop to each element of the vector, and adds an
additional row in its RDVT (as shown in Figure 3b).

After A receives C’s resource information and updates
its routing table, it informs its neighbors (in this case,
node B) of the update.

By exchanging the merged vector, we reduce both
the amount of information transmitted and the storage
used. Because this merging process chooses the
minimum value of all vectors, hash positions related to
a resource may have different values. It is not difficult
to see that the maximum value represents the distance
to that resource. For example, in A’s combined vector
VA in Figure 3 (a), to check a resource b(4,0), we find
in the related positions: VA(4)=0, VA(0)=1. So the
distance from node A to resource b is 1, the larger of
the two values. We set a hop count limit, which we call
radius, to limit how far the resource information can
travel. In the merged vector, if an element’s value
equals radius, we reset the value to infinity (“~” in the
figure), representing “not available.”

Each node sends updates to and receives updates
from its directly connected neighbors. When a node
receives routing information from a neighbor, it
updates its local table if the neighbor suggests a
“better” route than what it already knows about.
Eventually the table stabilizes, and all resources within
the range determined by radius are known. Nodes need
to periodically “ping” their neighbors to make sure that
they are still alive. To reduce the overhead of
transmitting routing information, a soft-state update
mechanism is used, in which routing information is
exchanged periodically. At any given time, the resource
routing information may potentially be stale or
inconsistent, but as mentioned, this approximation will
not affect the system’s fidelity.

3.3. Query forwarding

This section illustrates how RDVT can be used to
route queries. When a node receives a query, it
converts the query into a triple sequence and matches
the sequence in the RDVT. If enough matches are not
found locally, the node chooses the “right” neighbors
to forward the query to. A query may be transferred
several hops until arriving at the matching node or the
query TTL expires.

Figure 4 illustrates a query routing example. Like
the previous example, we only show one of the three
triple vectors. For simplicity, the query has only one
constraint. The radius is set to 3, so nodes are only
aware of resources within 3 hops. In this example, node
A receives a query for resource e (which is mapped to
two positions: 3 and 6 in the filter). It checks its routing
table and finds two matches: through C with 2 hops
(C3=2, C6=2) and through D with 3 hops (D3=3, D6=3).

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

So the shortest distance to the resource is 2 through
neighbor C. Therefore, the query is forwarded to C.
Similarly, C forwards the query to E. E finds a match in
its local vector, and then it checks the RDF database
with the original RDQL query.

Figure 4. Query routing

Our routing algorithm works fine with networks
containing cycles. Because of cycles, a node may
receive a query multiple times. To avoid processing
queries more than once, every query has a unique query
ID and every node keeps a list of recently received
query IDs. If a query has been received before, it will
be discarded. Another benefit of recording the query ID
is that it ensures the query does not hit the same false
positive twice.

3.4. Heuristic jump and caching

By setting a radius, we limit the distance a node’s
resource information can travel. This reduces false
positives, but at the same time, a node does not have
global knowledge of the network but only a local view
of the neighborhood. Because of this, a node may not
find enough matches from its RDVT to forward queries.
A naive solution is to forward the query to some
random neighbors even if they have no match – hoping
that these neighbors can find matches from their
neighborhood. This method is inefficient since your
neighbor has a neighborhood which largely overlaps
your own. If the requested resources are scarce in the
local area, forwarding the query to another neighbor in
this area will not substantially increase the chance of
resolving a query. To address this problem, we
introduce a forwarding method called “heuristic jump.”

This method allows the system to keep additional
long-distance links as an addendum to the RDVT.
When the RDVT cannot resolve the query, the query
will “jump” to remote nodes the links point to. To
discover those long-distance links, the system employs
an aggressive caching technique. After finding the

result of a query, the result travels along the reverse
path to the requester. Whenever it is passed through a
node, it is cached in that location. Every internal node
caches the query, the destination node, and the distance
to that node. We use caching to not only eliminate the
need to forward a query which may be resolved locally,
but also use this cached information as links for future
long-distance jumps. During the query-forwarding
process, when a node cannot find enough matches in its
routing table, it chooses appropriate long-distance links
from its cache and forwards the query accordingly.
This expedites the searching process by jumping over
barren areas. Candidate long-distance nodes should be
located outside the neighborhood area; i.e., the distance
should be greater than radius. In our heuristic, we also
consider other metrics, for example, jump to nodes that
answered more previous queries, or to nodes that
answered similar queries. Our experiment in section 4.2
shows that forwarding by “heuristic jump” improves
search efficiency.

4. Experiments

We performed extensive simulations to evaluate the
performance of the routing scheme. In this section, we
first describe our simulation methodology, and then
present results for both static and dynamic network
operations.

4.1. Simulation methodology

The topology of the network defines the number of
nodes and how they are connected. In our model, we
used BRITE [29], a well-known topology generator to
create two kinds of network topologies: the random
graph and the power-law graph. The resource set
includes 10000 RDF triples (500 distinctive ones). We
model the location of these resources using two
distributions: the uniform distribution and a 70/30
biased distribution. Requesters are randomly chosen
from the network. In order to simulate dynamic
network behavior, we update resources, insert “on-line”
nodes and remove active ones periodically. Arriving
nodes start functioning without any prior knowledge.
Our evaluation metrics are: (1) the recall rate which is
defined as the number of results returned divided by
the number of results actually available in the network;
(2) the number of messages created to maintain the
routing table and to resolve queries; (3) the number of
hops to resolve a query.

In our experiments, some default values are used for
the following arguments unless declared specifically:
topology=power-law, resource distribution=uniform,

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

network size=2000, average node degree=5, number of
walkers=5, TTL= 100 and radius=3.

4.2. Static experiments

Our goal with the static experiments is to examine
the characteristics of RDV routing with a static network
and to show its efficiency and scalability. To make
comparisons, we simulate RDV in conjunction with
learning-based routing [14, 20], which routes queries to
neighbors according to past experience. We deploy 5
walkers for both routing algorithms: the original
requesting node forwards the query to 5 neighbors,
while the rest of the nodes forward only to 1 neighbor.

0%
20%
40%
60%
80%

100%

500

1000

1500

2000

2500

3000

re
ca

ll

RDV r=3
RDV r=1
Learning

Figure 5. Recall versus network size

0
10
20
30
40
50

500 1000 1500 2000 2500 3000av
g

ho
ps

 p
er

 q
ue

ry RDV r=3
RDV r=1
Learning

Figure 6. Hops versus network size

Figures 5 and 6 compare RDV (with radius=1, and
3 respectively) with learning-based forwarding in terms
of query recall rate and query hop consumption. The
network size increases from 500 to 3000. As expected,
our RDV routing algorithm outperforms learning-based
routing on both metrics. RDV always forwards the
query to the right direction, so it can find more results
and thus enjoy a higher recall. In addition, RDVT
records the resource distance information, so it can
forward queries to the nearest resource providers.
That’s why RDV needs fewer hops to resolve a query.
Another observation is that RDV with radius=1
achieves pretty good performance. When radius=1, the
RDV routing becomes very simple: nodes only
exchange local resource index with neighbors, and they
do not need to manage the index aggregation. Under
this condition, the system can save lots of computing
power for the routing, but the routing accuracy will be
affected a little bit. This scheme fits for systems having
more concerns for the simplicity than the accuracy.

Figure 7 illustrates the relationship of the query
recall rate with the query TTL. Note that the recall rate

is achieved by only 5 walkers – increasing the number
of walkers will increase the recall rate under certain
TTL.

0%
20%
40%
60%
80%

100%

0 30 60 90
120 150 180TTL

re
ca

ll

RDV
Learning

Figure 7. Recall versus TTL

0%
20%
40%
60%
80%

100%

0 1 2 3 4 5 6 7 8 9radius

re
ca

ll

Figure 8. Recall versus radius

0%
20%
40%
60%
80%

100%

500

1000

1500

2000

2500

3000

re
ca

ll

no
yes

Figure 9. Effect of heuristic jump

How far the resource information propagates
determines how much a node learns about the network.
Figure 8 shows the influence of the routing radius on
query recall. When radius=0, the RDV algorithm
degrades to a random walk algorithm. Initially,
increasing the radius increases the nodes’ knowledge
of the network, thus improving the query performance.
When the radius grows to three, nodes have a good
knowledge of the network; further increasing the radius
does not bring more benefit. On the contrary, that
deteriorates the recall rate because the large amount of
resource index aggregation causes more false positives
of the Bloom filters.

Figure 9 compares the performance of routing with
and without using the “heuristic jump.” We can see
“heuristic jump” improves the overall recall rate.

4.3. Dynamic experiments

In this section, we present simulation results for a
changing network to show that our routing scheme is
robust and effective under this situation. The dynamic
network behaviors are simulated like this: in every unit
simulation time, an active node has a twenty percent
possibility to create a query, one percent possibility to
update its resources, and one percent possibility to

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

leave the system. Some offline nodes, whose number is
the same as the leaving nodes, join the system and start
functioning without any prior knowledge. Nodes
propagate their updated routing information (if any)
every three unit time.

Figure 10 illustrates the recall rate in the dynamic
environment mentioned above. We can see that RDV
continues to exhibit a much better recall rate than the
learning-based routing. According to Figure 11, the
recall rate in the dynamic environment shows only a
small decrease, compared with the static environment.

Figure 12 compares the aggregate overhead of
routing table update and query during the whole
simulation period. In this experiment, the update
message was propagated in the format of compressed
full-table update. But in practice, a system may have
two types of updates: full-table updates and
incremental updates. The latter would occur more
frequently and its size is much smaller, therefore the
update overhead can be even smaller.

0%
20%
40%
60%
80%

100%

500

1000

1500

2000

2500

3000

re
ca

ll

RDV
Learning

Figure 10. Recall rate versus network size

0%
20%
40%
60%
80%

100%

500

1000

1500

2000

2500

3000

re
ca

ll

Static
Dynamic

Figure 11. Static and dynamic recall rate

0
100
200
300
400
500
600

500

1000

1500

2000

2500

3000ag
gr

eg
at

e
lo

ad
 m

b query
update

Figure 12. Update overhead and query overhead

5. Related work

Many recent P2P-based searching techniques relate
to our research. Flooding is the predominant search
method in unstructured P2P networks. This method,
though simple, does not scale well in terms of message
overhead. There have been numerous attempts [1, 2, 3]
to enhance its scalability. Random Walks [14, 20] are
an alternative to flooding for unstructured searches.

They can reduce the amount of network traffic, but it is
at the cost of query latency. The learning-based
forwarding used in our experiments, in fact, is an
advanced version of random-work. Recently,
hierarchical super-peer systems [13] have been
proposed to improve searching efficiency.

DHTs [16–19] have received a lot of attention in the
last few years. These systems have been shown to be
scalable and efficient. However, a missing feature of
DHTs is keyword searching and support for more
advanced queries. Another hurdle to DHTs deployment
is their tight control of both data placement and
network topology, which makes them more sensitive to
failures, and difficult to keep the content and path
locality [9].

More recently, a few studies [10, 21, 22] extend the
DHT scheme to support keywords or multi-attribute
queries. The basic idea is to map each keyword to a key.
A query with multiple keywords then uses the DHT to
lookup each keyword and returns the intersection. In
order to do that, large amounts of data must be
transferred from one peer to another, and the traffic
load may be high [6]. Systems like [23] avoid this
multiple lookup and intersection by storing a complete
keyword list of an object on each node, but this may
incur more overhead on publishing and storing the
keywords.

Some applications have used RDF to represent
resources and queries. Edutella [5] is a well known
example. It uses a super-peer structure. To resolve a
query, it broadcasts the query to the super peer overlay
network. Cai et al. propose a DHT-based P2P
architecture called RDFPeers [11], which maps RDF
triples to the Chord overlay. This approach, however,
suffers from the same inherent shortcomings of the
DHTs mentioned previously.

Bloom filters have been used as a succinct summary
technique for query filtering and routing. For example,
OceanStore [32] uses attenuated Bloom filters to store
objects information. PlanetP [15] also uses Bloom
filters to distribute a summary of the contents of each
peer.

6. Conclusion

As more and more resources appear in grids, there is
a compelling need to find an effective and efficient way
to discover and query these resources. In this paper, we
present a novel design for resource discovery in large-
scale grids. The system is based on the P2P model and
provides a complex query interface. It supports rich
resource descriptions and complex queries by encoding
resources and queries with RDF. To avoid flooding

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

queries to irrelevant nodes, a semantics-based routing
scheme is proposed to route queries only to related
nodes. This system has been evaluated by a group of
simulations, which show that the proposed routing
schemes are both efficient and scalable.

7. References

[1] Chawathe, Y., Ratnasam, S., Breslau, L. Lanhan, N.
Shenker, S. “Making Gnutella-like P2P Systems Scalable”,
In Proceedings of ACM SIGCOMM’03.
[2] B.Yang, H.Garcia-Molina, “Efficient search in peer-to-
peer networks”, Proc. of CDCS’02, Vienna, Austria, July
2002
[3] Banaei-Kashani, F. and C. Shahabi. “Criticality-based
analysis and design of unstructured peer-to-peer networks as
complex systems.” Proc. of the 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid, pp. 351-358.
[4] Ora Lassila and Ralph R. Swick, “W3C Resource
Description framework (RDF) Model and Syntax
Specification.”
[5] W. Nejdl, M. Wolpers, W. Siberski, A. Loser, I.
Bruckhorst, M. Schlosser, and C. Schmitz. “Super-Peer-
Based Routing and Clustering Strategies for RDF-Based
Peer-To-Peer Networks.” In Proc. of the Twelfth
International World Wide Web Conference, 2003.
[6] Globus Toolkit: http://www.globus.org/toolkit/
[7] Dan Brickley and R.V.Guha. “W3C Resource
Description Framework (RDF) Schema Specification.”
http://www.w3.org/TR/1998/WD-rdf-schema/
[8] B.Bloom. “Space/time tradeoffs in hash coding with
allowable errors.” Communications of the ACM, 1970.
[9]N. J.A. Harvey, M.B. Jones, S. Saroiu, M. Theimer, and A.
Wolman. “SkipNet:A Scalable Overlay Network with
Practical Locality Properties.” In Proceedings of the Fourth
USENIX Symposium on Internet Technologies and Systems
(USITS ’03), Mar. 2003.
[10] S. Shi, Y. Guanwen, D. Wang, J. Yu, S. Qu and M.
Chen “Making Peer-to-Peer Keyword Searching Feasible
Using Multi-level Partitioning.” Proc. Of the 3rd
International Workshop on Peer-to-Peer Systems, San Diego,
CA, USA, February.
 [11] M. Cai and M. Frank. RDFPeers: “A Scalable
Distributed RDF Repository based on A Structured Peer-to-
Peer Network.” In International World Wide Web
Conference (WWW), 2004.
[12] H. Lican, W. Zhaohui, and P. Yunhe. “A scalable and
effective architecture for Grid Services discovery.” In Proc.of
the First Workshop on Semantics in Peer-to-Peer and Grid
Computing, 2003.
[13] B.Yang and H.Garcia-Molina, “Designing a Super-Peer
Ntrwork”, Proc. 19th Int’l Conf. Data Engineering, Los
Alamitos, CA, March 2003
[14] Lv, C., Cao, P., Cohen, E., Li, K., Shenker, S. “Search
and replication in unstructured peer-to-peer networks.” In:
ACM, SIGMETRICS 2002.
[15] F. M. Cuenca-Acuna, C. Peery,R. P. Martin, andT. D.
Nguyen. “PlanetP: Infrastructure Support for P2P

Information Sharing”, Technical Report Department of
Computer Science, Rutgers University, Nov. 2001.
 [16] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.
“Tapestry: An Infrastructure for Fault-Tolerant Wide-Area
Location and Routing,” Technical Report, UCB/CSD-01-
1141, April 2000.
[17] A. Rowstron and P. Druschel. “Pastry: Scalable,
Distributed Object Location and Routing for Large-Scale
Peer-to-Peer Systems,” Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms,
Middleware, November 2001.
[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H.Balakrishnan. “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications,” ACM SIGCOMM, 2001
[19] S. Ratnasamy, P.Francis, M.Handley, R.Karp, and S.
Shenker. “A Scalable Content-Addressable Network,” ACM
SIGCOMM, August 2001
[20] Adamic, L., Huberman, B., Lukose, R., Puniyani, A.:
“Search in power law networks.” Physical Review (2001)
[21] P.Reynolds and A. Vahdat. “Efficient Peer-to-Peer
Keyword Searching.” In Proceedings of ACM/IFIP/USENIX
Middleware, June 2003
[22] M. Cai, M. Frank, J. Chen and P. Szekely, “ MAAN: A
Multi-Attribute Addressable Network for Grid Information
Services”The 4th International Workshop on Grid Computing,
2003.
[23] C.Tang and S.Dwarkadas. “Hybrid Gloablal-Local
Indexing for Efficient Peer-to-Peer Information Retrieval.” In
Proceedings of USENIX NSDI, March 2004.
[24] Dublin Core metadata definition: http://dublincore.org/
[25] G. Karvounarakis, S. Alexaki, V. Christophides, D.
Plexousakis, and M. Scholl. “RQL: A Declarative Query
Language for RDF.” In Proceedings of The Eleventh
International World Wide Web Conference (WWW’02),
Hawaii, May 2002.
[26] Michael Sintek and Stefan Decker. “TRIPLE - An RDF
query, inference, and transformation language.” In Deductive
Databases and Knowledge Management, October 2001.
[27] A. Seaborne. “RDQL: A Data Oriented Query Language
for RDF Models.”
www-uk.hpl.hp.com/people/afs/RDQL/, 2001.
[28] Brian McBride. “Jena: Implementing the RDFmodel and
syntax specification.” Technical report, Hewlett Packard
Laboratories, Bristol, UK, 2000.
[29] A.Medina, A. Lakhina, I.Matta, and J. Byers, “BRITE:
An Approach to Universal Topology Generation,” Proc. The
International Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunications Systems-
MASCOTS, Cincinnati, Ohio, August 2001.
[30] Iamnitchi A, Foster I, “On Fully Decentralized Resource
Discovery in Grid Environments”, Proc. The 2nd IEEE/ACM
International Workshop on Grid Computing 2001, Denver,
November 2001.
[31] Chander, A., S.Dawson, P.Lincoln and D.Stringer-
Calvert. "NEVRLATE: Scalable Resource Discovery." Proc.
Second IEEE/ACM internation Symposium on CLuster
Computing and the Grid (CCGRID2002).
[32] S. C. Rhea and J. Kubiatowicz, “Probabilistic location
and routing,” in Proc. INFOCOM, vol. 3, New York, NY,
June 2002, pp. 1248–1257.

Proceedings of the First International Conference on e-Science and Grid Computing (e-Science’05)
0-7695-2448-6/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

