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Abstract

This paper presents GOIDS (Grid Ontological
Integration and Discovery System), a comprehensive
architecture for resource sharing and discovery in
large-scale grids, where nodes integrate local
ontologies to expand semantic knowledge of shared
grid resources. A peer-to-peer based ontological
directory service is used to facilitate the formation of
the semantic small-world - ontological communities.
Ontological communities help prune the searching
space and reduce the cost of searching. Inside
communities, resource knowledge is integrated
between nodes, and a DHT overlay is used for
knowledge dissemination and discovery. This
framework architecture improves interoperability
among grid participants and aids efficient resource
discovery through an expressive query language.

1. Introduction

A large-scale grid enables the sharing of a wide
variety of resources, including hardware components,
software packages, knowledge information, devices,
and other grid services. However, the resource
discovery problem in large-scale grids is challenging
because of the abundance of resources and the
dynamic, heterogeneous, and distributed nature of
resources. Equally challenging is the task of integrating
information about different properties and usage
policies of these resources.

In this paper, we describe appropriate enhancements
for grid resource discovery. We focus on the design of
GOIDS, an effective resource discovery and integration
framework which reduces the complexity of
information sharing and discovery on Internet-scale
grids. The system relies on ontologies to describe the
structure and semantics of resource properties to
increase the system's expressiveness and
interoperability.

To improve the scalability of this approach, we
reconfigure the network topology according to nodes'
ontological interests, so that the network exhibits the
"small-world" properties [1]. Specifically, we use an
ontology directory overlay to help nodes form virtual
communities. The community discovery, construction,
and maintenance are manipulated in a decentralized
and automatic manner. Communities help
discriminatively distribute queries to ontologically
related nodes, thus reducing the search space and
improving the scalability.

Inside each community, nodes share similar
interests, but they may use different ontologies. An
ontology integration strategy is presented. It permits
different community members to establish mappings
among the various ontologies. Resource knowledge
within a community is indexed in a DHT overlay and is
accessible through an expressive ontology-based query
language. We proposed two different coarse-grained
indexing schemes; an application can choose one
scheme according to its specific need.

2. Related work

In medium-sized grids, resource discovery is usually
guided by centralized servers [2]. To discover
resources in more dynamic, large-scale, and distributed
grid environments, P2P techniques have been used
(e.g., [14, 15]). Flooding is the predominant search
method in unstructured P2P networks. This method,
though simple, does not scale well in terms of message
overhead. An efficient approach is the use of
distributed hash tables (DHTs) [3-6], which has been
shown to be scalable and efficient. However, a missing
feature is the inherent support for expressive queries.

Research on the Semantic Web project [7] has
recently gained much attention for its knowledge
integration vision. Its focus is to exploit the power of
semantic technologies to aid in information
representation, retrieval and aggregation over the web.
Most of the Semantic Web projects use the standard
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RDF language [12] to describe data. Ontology
languages such as DAML+OIL [17] and OWL [18]
build on top of RDF allow a user to describe relations
between resources, defining a more abstract and
expressive resource sharing environment.

In the last few years, several projects aimed to
combine the strengths of grid and semantic web
technologies, particularly for the use of resource
sharing. For example, the UK myGrid [8] project uses
ontologies to describe and select web-based services
used in the Life Sciences, while OntoGrid [9] mixes in
techniques from agent computing and P2P for
distributed discovery of semantic knowledge.

The integration of Semantic Web and P2P
technologies can also serve to benefit each other. For
example, in the InfoQuilt [10] system, nodes use the
DAML+OIL ontological language to describe their
information. Ontology knowledge is registered to a
central server for efficient indexing, while queries are
forwarded between nodes in a P2P manner. Helios [ 1]
is another system that uses the P2P model for semantic
knowledge sharing. Unlike InfoQuilt, both the ontology
knowledge and data instance discovery in Helios are
based on an unstructured P2P network.

Like the mentioned systems, our system takes
advantages of the semantic web and the P2P
technologies to enhance resource sharing and
searching. We focus on improving the interoperability
and scalability of an Internet-scale grid.

3. System overview

3.1. Two-tier structure

To make the searching more focused, we cluster
nodes sharing similar ontological interests together; as
a result, the queries can be forwarded to nodes that are
likely to contain relevant resources. However, in an
open global-scale grid, it is difficult to discover nodes
with similar interest. We solve this problem by using an
ontological directory to organize dispersed ontologies,
and to allow nodes find others sharing similar interest.
The directory works as a "rendezvous" for nodes
meeting others with similar ontological properties, thus
facilitating the construction of semantic clusters. The
directory does not need to be predefined; it
spontaneously grows as the network ontology evolves.

The system is organized by employing two layers -
the directory overlay and the community overlay; and
the former facilitates the formation of the latter. Both
overlays adopt the P2P-based DHT structure. When a
node joins the system, it first locates the interested
ontological community by looking up the directory

overlay, from where it gets one or more contacts of the
interested community. It then joins the community
through those contacts. After it joins the community,
the new node publishes its resource ontology
knowledge in the community overlay. It also maps its
ontology with other related ontologies through the
community overlay. Based on the ontology knowledge
indexed in the community overlay, nodes can share and
discover resource information efficiently.

3.3. Peer ontology

3.3.1. Knowledge repository. Nodes use ontologies to
explicitly describe details of their possessed resources,
as well as their knowledge of concepts and
relationships regarding the resources. In our system the
ontology knowledge is separated in two parts: the
terminological box (T-Box) and the assertion box (A-
Box). The T-Box statements describe concepts and
relationships between concepts, for example a set of
classes and properties. The A-Box represents the
concrete knowledge about individuals within the
domain, for example the instances of the classes
defined in the T-Box. A node also uses inference
engines to derive additional facts from instance data
and class descriptions.

3.3.2. Ontology mapping. Nodes in the community
may use different ontologies. To reconcile the ontology
differences, a node maps its ontology with those of
other nodes. The ontology mapping is created by
mapping related elements from different ontologies.
We define the following inter-ontology mappings:

() MC, >C2 Mc C
t_r cr=r

Mc: class mapping between class C1 and C2
_: subClass mapping

: superClass mapping
: equivalentClass mapping
: referentialClass mapping

(2) Pi Mp >P24Mp `-p, DP,=p, -p

Mp: property mapping between property P1 and P2
c: subProperty mapping
_p

, superProperty mapping
_p

equivalentProperty mapping
p

.,: reverseProperty mapping

The defined mappings between different ontologies
either refer to the same concept, relation, or one is a
special (or general) case of the other. We also note that
various ontologies may contain different supplementary
information about the same real world individual; thus
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we add a special referentialClass relation between
concepts. This allows individuals to be merged if
specific properties match, creating an aggregated
entity. The ontology mapping information is indexed in
the community overlay. When a node joins the
community, it uploads its ontological concepts and
properties to the community overlay, where it also
learns knowledge of other related concepts and
properties. The knowledge gives hints and suggestions
to the new node when it maps its ontology to those of
others.

4. Ontological directory overlay

This section describes details of the directory
overlay: the first layer of the two-layer architecture.

4.1. Introduction

The function of the directory overlay is to assist the
construction of community overlays. The directory is
represented by the ontology hierarchy which is shaped
by the high-level concepts within the whole resource
ontologies. Nodes in the directory overlay are also user
nodes that are stable and have good Internet
connectivity compared with the rest nodes. Concepts
are organized into a hierarchical directory, and the
directory is distributed among the overlay nodes. A
directory path starting from the root is used to represent
the ontology domain (e.g., Isciencelcomputer science/AI).
A problem we need to solve here is how to index

and search the hierarchical directory data. Many
applications use hierarchical DHTs like Canon [16] or
HIERAS [2] to index hierarchical data, but they are not
applicable to our system: specifically, in Canon,
information is only stored in real nodes (leaves nodes),
while all internal nodes are purely virtual; however,
directory information in our system is stored in real
(non-virtual) internal nodes. In addition, it is difficult to
implement directory browsing inside the Canon
network. HIERAS constructs the multi-level hierarchy
by creating multiple DHT overlays for each sub-
domain. Maintaining multiple DHTs requires a big
overhead; it is a huge waste if the sub-domains are not
large enough. In this paper, we propose a simple flat
DHT structure to index the hierarchical directory. This
structure enables economical, flexible, and balanced
lookup services.

4.2. Directory indexing and lookup

The directory overlay provides three lookup
interfaces: (1) exact path lookup, (2) directory browser-

based lookup, and (3) keyword-based lookup. An exact
path lookup query contains the complete directory path
of the interested domain, for example
"/computerlhardware/CPU". The directory path of the
query is hashed to a key and then a corresponding
lookup of the hashed key on the DHT is executed.
However we can not expect a user knows the exact
directory path to locate an interested domain.
Therefore, we provide users a more flexible interface:
directory browser. Users can expand a directory tree
node to browse its child branches until they find the
desired directory entries. A node can also specify one
or more key concepts in its ontology and use them as
keys to lookup the directory overlay. The node that is
in charge of the keyword keeps links to the
corresponding directory entries. If multiple entries
appear under the same keyword, they are returned to
the user for further specification. Keywords are
extended with WordNet [13] vocabularies and
ontology knowledge obtained from the community
overlay.

Index by directory
path

-5 NI 0 nex by keywords

N9619

nIdex b directory path
/entertainment/movie
/science/animal

...

Index by keywords
CPU
author

Figure 1. Directory overlay structure

We use Chord [5] to implement the directory
overlay. As shown in Figure 1, for each directory path,
sub path, or keyword, a hash value is computed using
an SHA- 1 algorithm. Each key is assigned to its
successor node, which is the nearest node traveling the
ring clockwise. Each successor node of the directory
key maintains a LRU cache storing information of
peers that are interested in this directory. To implement
the directory browser's functionality, an overlay node
that is in charge of a directory entry also stores that
directory's children information. When the user
chooses one directory, Chord routes to that directory
entry and retrieves children directory information, such
that the directory can be extended dynamically while
browsing. An overlay node also stores keywords that
are hashed to it, and links the keywords with related
directory entries.

Based on its semantic interests, a new joining node
registers to the directory overlay. The overlay node in
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charge of that interest returns this new node one or
more peer contacts from its cache. Then the new node
can join the community through those contacts. A node
with multiple interests can register with multiple
communities.

4.3. Directory overlay load balancing

Nodes storing very popular directories run the risk
of being overloaded by large amount of directory
register requests. In this scenario, redistribution via
shedding some local directories to other nodes does not
guarantee any significant improvement of the situation
since even a single directory, popular enough, could
induce an overload. Our system uses a replication-
based method to solve this problem. Each node
periodically checks its current load. If the load is above
an overloading threshold, the node will pick a light-
loaded node to replicate its directory keys. Since more
than one node is now responsible for a popular
directory, algorithms can be applied that would
encumber each responsible node with only a fraction of
the total load. Nodes then periodically exchange their
cached peer information to make sure the communities
created with their assistance are well-connected.

As we indicated, key replication can relieve the
register load of nodes in charge of popular directories.
However, in a DHT overlay, another significant source
of workload is from relaying messages among nodes. A
node may be overwhelmed simply by the traffic
induced by forwarding incoming queries, such as in the
case of intermediary nodes on the lookup path of
popular directories, which can be overloaded by having
to forward requests to the directories. To address this
problem, a node n can actively redistribute its routing
load by replicating its routing table to another node m.
Future queries can then be routed to either n or m, and
since m has n's routing table, m can keep forwarding
queries to the right destination, maintaining the
correctness of the network.

In order for the previously outlined scheme to be of
any use, however, replica nodes should obviously be
advertised in the network so that other nodes know and
can subsequently take advantage of their existence. For
Chord-based DHTs, the replicas should be entered into
the finger tables of related nodes. Similar to the node
joining process, the algorithm starts with the ith finger
of the original node n and then continues to walk
counter-clock-wise on the identifier circle until it
encounters a node whose ith finger precedes n. The total
cost for the replica update, in terms of the number of
messages exchanged, is O(log2 N).

5. Ontological community overlay

This section explains how to efficiently manage and
discover resource knowledge in a relatively large
community using the DHT approach. Sharing in a
small community can be achieved using a similar
gossip-based strategy applied to a Gnutella-like
overlay.

5.1. Resource knowledge indexing

5.1.1. T-Box indexing. Like the database schema, a
node's T-box knowledge is more abstract, describing
the node's high-level concepts and their relationships.
Basically, the T-Box knowledge includes class
elements and property elements. They are indexed to
the community overlay by hashing the subject and the
object of their RDF triples. For example, a class
assertion: <os><superClasss> <unix>, is first indexed
by subject, and sends the following message to the
overlay:
STORE [key, [("subject", <os>),

('>predicate ", <superClass>),
("object", <unix >)}}

where key=SHAJHash("<os> ')
In the message, the first attribute-value pair

("subject", os) is the routing key pair, and key is the
SHAI hash value of os. Similarly, the triple is indexed
by object as well, i.e., use the attribute-value pair
("object", unix ) as the routing key pair. The target
DHT node stores the assertion and possibly generates
new assertions by applying the entailment rules. These
new assertions have to be sent out to other nodes. Thus,
after finishing this process, the whole T-Box
knowledge is accessible in a well-defined way over the
community overlay.

5.1.2. A-Box indexing. T-Box indexing does not
require creating and maintaining oversized indices of
individual instances. The downside of keeping only the
T-Box information in the community overlay, is that
query still have to be forwarded to many unrelated
(from the instance-level) nodes. To improve the
accuracy of the query answering, nodes can index their
A-Box instances in the community overlay. The A-Box
indexing is based on indexing the RDF triples as well.
We store each triple three times, indexing by the
subject, predicate, and object respectively.

There is a tradeoff between query overhead and
indexing overhead. When the system has a high
requirement for fast and efficient query answering, it
has to pay more for the knowledge indexing; on the
other hand, if the system does not index the detailed
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knowledge, it has to explore more nodes for searching
the query results. Applications should determine the
right indexing granularity according to their specific
need.

5.2. Semantic query processing

Once a node has joined a community, it can query
information within that community. Our current system
uses RDQL [19] as the query language, which is based
on matching {subject, predicate, object} triples.
A query is generally constructed with the user's

local ontology, and only nodes that use the same
ontology can understand the query. To retrieve relevant
data reachable through other ontologies, the initial
query should be extended and reformulated based on
the inter-ontology relationships stored in the
community overlay.

Because of the distributed nature of the resource
data, the system should be capable of breaking queries
into appropriate sub-queries to be executed at different
sites and then piecing together the results to compute
answers to the original queries. The query analysis
engine must use the ontological knowledge to
efficiently navigate the search space as to reduce the
size of the data that is aggregated at each inter-nodal
junction in query processing.

6. Experiment

Our first set of experiments evaluates the
performance of the load balancing algorithm of our
directory overlay. The initial overlay network size is
5000. Then directory paths are advertised to the
overlay. The directory lookup queries are Zipf
distributed, regarding the fact that most of the peers are
interested in popular directories but only a few are
interested in rare directories. Each node is assigned a
value (from 1 to 5) representing its capacity. We varied
the directory query frequency from 5 to 50 per time
slice and conducted a separate experiment for each
frequency.

Figure 2 plots the mean and the 10th and 90th
percentiles of the peer workloadlcapacity ratio. The
result can be used to represent the workload variances
on the peers. The smaller the difference, the better the
load balancing performs. From Figure 2, we can see
that our algorithm greatly balanced the load of each
peer. We also observe that, as we increase the query
frequency, the variance becomes larger. This is because
directory lookups are highly skewed, introducing more
query will result in more imbalanced distribution of
directory accesses.

500
400

P. 3000
o 200 -

7
ct 100 __________7_____________

query freq 5 10 15 20 25 30 35 40 45 50

(a) Without load balancing

500-
400____________________
300-
200-

10

query fteq 5 10 15 20 25 30 35 40 45 50

(b) With load balancing adjustment

Figure 2. Mean, 10th and 90th percentiles of the ratio
of load/capacity.

Figure 3 compares the performance of the T-Box
and the A-Box indexing in terms of query overhead and
indexing overhead. There are totally 30 different
ontologies. In the simulation, each node can randomly
pick one ontology. From the figures we can see that,
the A-Box indexing overhead is high, while the
searching overhead based on it is low. On the contrary,
the T-Box indexing overhead is low but the searching
overhead could be high.

200

150 - T-Box index
a, 100 A-Boxindex

050

node# 1000 1500 2000 2500 3000 3500 4000 4500 5000

(a)lndexing overhead: triples per node

D 500

o: 400

a. 300

gm 200

W- 100

- T-Box indeming
A-Box indemxng

0

node# 1000 1500 2000 2500 3000 3500 4000 4500 5000

(b) Query overhead: messages per query

Figure 3. Comparison of the indexing and query
overhead between T-Box indexing and A-Box indexing

Figure 4 illustrates the effect of ontology
heterogeneity on the performance of T-Box indexing.
We noticed that the searching performance based on T-
Box indexing is related to the system's ontology
heterogeneity: the more ontologies in the network, the
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better the searching performs. This is easy to
understand: when nodes have homogeneous ontologies,
most nodes have the same T-Box knowledge; then
indexing T-Box cannot effectively distinguish nodes,
thus query forwarding performs poorly. When the
system has highly heterogeneous ontologies, T-Box
indexing can distinguish nodes' ontologies well;
therefore query routing is more efficient.

15

0
ontology #5 10 15 20 25 30 35 40 45 50

(a) Number of triples per node

5000 0
.

400
m i300 \
E~.200
o 100

0
ontology # 5 10 15 20 25 30 35 40 45 50

(b) Number of messages created per query

Figure 4. Effect of ontology heterogeneity on T-Box
indexing

7. Conclusion

As more and more resources appear in grids, there is
a compelling need to find an effective and efficient way
to discover and query these resources. In this paper, we
presented GOIDS, an ontological framework for
resource integration and discovery in large-scale grids.
The system provides a distributed ontological directory
service to help nodes form communities according to
their semantic properties. As a result, searching cost is
reduced by sending discovery requests only to
appropriate semantic communities. Inside a
community, nodes may use different ontologies to
represent their resource knowledge, and a distributed
integration mechanism was proposed to cope with the
mediation between different ontologies. To efficiently
locate the desirable resources in the community, a
flexible DHT indexing scheme is provided. The main
algorithms of the system were evaluated with
simulation experiments.
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