

Exploiting Social Property for Improving Distributed Semantic Search

Juan Lia

North Dakota State University, U.S.A

Abstract

 To locate desirable Semantic Web data in a distributed
network, the discovering mechanism has to be not only
semantically rich, in order to cope with complex queries, but
also scalable to handle large numbers of information
sources. In this paper, we propose a novel scheme that
exploits the social property of humans, such as natural
grouping and peer recommendation between people with
common interests, to expedite the discovery of Semantic
Web data in large-scale distributed networks. In this
framework, network nodes perform local dynamic topology
adaptations to spontaneously create communities according
to users’ social-closeness. The basic premise of such
semantic communities is that search requests have a high
probability of being fulfilled within the community they
originate from. For queries which cannot be efficiently
solved inside the community, an index overlay built on
Distributed Hash Table (DHT) is used to assist the search.
Recommendations from peers with similar interests are
employed to improve both the efficiency and the precision
of the semantic search. Experiments with simulations
substantiate that our techniques significantly improve the
search efficiency, scalability, and precision.

Keywords: Semantic Web, search, overlay, query, social
behavior.

1. Introduction

 Semantic Web has been presented as an evolving
extension of World Wide Web [1, 2, 3]. With the
development of semantic web technologies, more and more
semantic web data are generated and widely used in Web
applications and enterprise information systems. These data
are structured with ontologies [4] for the purpose of
comprehensive and transportable machine understanding.
To fully utilize the large amount of semantic data, an
effective search mechanism customized for Semantic Web
data, especially for ontologies, is needed by human users as
well as software agents and services. The unique semantic
features and the inherent distributed nature of Semantic
Web data make its discovery highly challenging.

aComputer Science Department
Fargo, ND 58108, USA
j.li@ndsu.edu

Peer-to-peer (P2P) technology has been used as a
solution to distributed resource discovery, since it scales to
very large networks, while ensuring high autonomy and
fault-tolerance. The recently proposed structured P2P
systems in the form of DHTs [5-8] are a promising approach
for building massively distributed data management
platforms. However, they offer few data management
facilities, limited to Information Retrieval (IR) -style
keyword search. Keyword search is appropriate for simple
file-sharing applications, but is unable to deal with complex
semantic queries which have various properties and
sophisticated relations with each other.

More recently, a few studies [9, 10] extended the DHT-

based P2P to support semantic queries. The basic idea is to
map each keyword of a semantic entity to a key. For
example, RDFPeer [9] indexes each RDF [20, 21] triple to
support semantic RDF query. A query with multiple
keywords then uses the DHT to lookup each keyword and
returns the intersection. Systems like [8] avoid this multiple
lookup and intersection by storing a complete keyword list
of an object on each node. In this way, the DHTs can
support multi-keywords queries. However, DHTs still have
difficulty to support other richer queries, such as wildcard
queries, fuzzy queries, and proximity queries. In addition,
most DHT-based applications require all peers in the system
sharing a uniform ontology schema, which is impractical in
reality. These limitations restrict the deployment of DHTs to
Semantic Web data discovery.

To support more complex queries, many P2P systems
[11, 12] use flooding or maintain a broadcasting structure,
such as a tree or a super cube, to propagate the queries to the
network. For example, to execute an RDF query, Edutella
[11] broadcasts the query to the whole hypercube. These
approaches can support arbitrary types of queries. However,
the overhead of flooding and broadcast may cause
scalability and efficiency issues.

To overcome the shortcomings of existing discovery

approaches, we propose a novel search mechanism which
utilizes the social behavior of participating peers and
integrates structured DHT P2P technology with unstructured
P2P technology. In our system, each user/node is associated
with a semantic summary representing the user’s social
interests. Based on the summary, we design a method to
compute the semantic similarity between different users.

The network topology is then reconfigured with respect to
nodes’ semantic similarity, so that peers with similar
interests are close to each other, forming a semantic
community. The semantic community is loosely structured
as an unstructured P2P overlay, called community overlay.
Because it has no structure requirements, the community
overlay is able to handle flexible complex queries. The
semantic locality property guarantees that the query
evaluation can be limited to relevant peers only. A
structured DHT-based overlay is used to facilitate the
construction of the community overlay and to assist query
evaluations that cannot be effectively resolved by the
community overlay.

Members in the same community share similar interests

hence are able to make recommendations to each other. A
node can get useful information from other peers’
recommendations. For example, before propagating a
question to the network, a node can first check what other
peers recommend for similar questions. Moreover,
recommendation feedback from semantically similar peers
can be employed to retrieve the most relevant results thus
improving the efficiency and precision of searching.
Recommendations not only help disambiguate search
requests quickly, but also personalize query results for users
by ranking higher the results that are relevant to users’
semantic properties. Therefore, the search quality in terms
of both precision and recall is improved. Finally, peers
recommend “friends” for each other to adapt to the evolving
network topology.

With the assistance of peer recommendation,

community overlay and directory overlay complement each
other, providing efficient search for the system. Compared
to search in pure structured P2P systems, our hybrid search
system has inherent support for complex semantic query or
partial match; in addition, the retrieved results are more
relevant. Compared to search in pure unstructured P2P
systems, our community-based structure saves the overhead
of flooding the query to unrelated nodes, thus enjoying more
scalability.

 The remainder of this paper is organized as follows.
Section 2 gives an overview of the system framework.
Section 3 describes one main component of the system – the
community overlay. Section 4 presents another major
component of the system – the index overlay. Section 5
introduces the query evaluation process. Section 6 explains
how peer recommendations can be used to improve the
discovery performance. In Section 7, we evaluate the
proposed strategies a comprehensive set of simulations.
Related work and concluding remarks are provided in
Sections 8 and 9, respectively.

2. System Overview

In a human society, people naturally form all kinds of
social networks by occupation, by interest, by location, etc.
People always utilize these communities to gain knowledge
or share information. In addition, people find that
recommendations from friends (i.e., contacts of the social
network) are more useful. The motivation behind the system
design is based on these observations and the fact that the
computer network is analogous to human social network.
Both computer networks and human communities consist of
members that are actively engaged in the sharing,
communication and promotion of common interests. We
believe we can exploit the social properties of the
participants to improve sharing and discovering in the
semantic network.

The proposed system consists of two logical overlays –

an unstructured community overlay and a structured index
overlay – taking different roles for efficient operations of
the system. Query evaluation is mainly performed in the
community overlay. In a community overlay, peers are
connected to those sharing common interests; as a result, the
propagation of a query tends to first reach those that are
more likely to possess the data being searched for. This
semantic locality property enables the community overlay to
answer most queries originated from the local community.
Unlike DHTs, community overlay does not specify any
requirements for the query format, hence is able to handle
any arbitrary types of complex queries. For the above
reasons, a large portion of queries can be resolved inside the
local community. However, peers are likely to have more
diverse interests which cannot be covered by the community
overlays they belong to. Therefore, there may exist a portion
of queries that cannot be resolved by searching the
community overlay alone. In this case, the index maintained
by the index overlay can be consulted for hints about where
to forward the query for a second try.

The index overlay is built on top of DHT protocols. It

provides a high-level directory service for the system by
indexing abstract ontology skeletons. The index overlay has
two main functionalities: (1) It facilitates the construction of
the community overlay. (2) It resolves unpopular queries or
queries that are not covered by the community overlay.
Unlike community overlay, index overlay does not give
exact answers of a particular query; instead, it locates all
peers possessing keywords of the query. Then the query will
be broadcasted to all peers related to the keywords for
further evaluation.

The distinction of community overlay and index

overlay is virtual. A physical node may be involved in both
of these two overlays. Community overlay and index
overlay benefit from each other: index overlay facilitates the
construction of the community overlay, while feedback
from communities improves the search precision of the
index overlay. Working together, these two overlays
improve the efficiency and accuracy of the system.

Recommendations are used by both the community
overlay and the index overlay to improve search
performance. In the community overlay, peers share similar
interests, therefore it is beneficial for them to recommend
information to each other. Nodes in the community overlay
maintain a cache to proactively exchange recommendation
information. In the index overlay, an indexed keyword may
have multiple meanings, not all of these meanings match the
requestor’s intention. Simply forwarding the query to all
peers containing the keywords is not accurate and consumes
lots of unnecessary network bandwidth. The index overlay
employs peers’ recommendation and feedback to solve the
aforementioned semantic ambiguity problem. After
receiving results from the index overlay, the requestor first
checks the validity of the results. Then it reports its findings
back to the index overlay nodes. The feedback will benefit
future requesters with similar interests.

In the following sections, we introduce the construction

and usage of these two overlays and how recommendation
can be applied to improve the efficiency and precision of
searching in these two overlays.

3. Community Overlay

The construction of the community is a topology
adaptation process, i.e., to make the system’s dynamic
topology match the semantic clustering of peers. When a
new node joins the network, existing nodes in the network
recommend some neighbors to it according to their semantic
similarity. A node also gradually updates its links according
to recommendations of its neighbors and its query
experiences, so that its topology always reflects its changing
interests and data contents. The community topology
enables queries to be quickly propagated among relevant
peers. In addition, this topology allows semantically related
nodes to establish ontology mappings.

3.1 Semantic similarity

 There has been extensive research [17 - 19] focusing
on measuring the semantic similarity between two objects in
the field of information retrieval and information
integration. However, their methods are very comprehensive
and computationally intensive. In this paper, we propose a
light-weight method to compute the semantic similarity
between two nodes.

Our system supports semantic web data represented as

OWL ontology. OWL ontology can be divided into two
parts: the terminological box (TBox) and the assertion box
(ABox) as defined in the description logic terminology [16].
TBox ontology defines the high-level concepts and their
relationships. It is a good abstraction of the ontology’s
semantics and structure. Therefore, we use a node’s TBox
ontology to represent its semantic interest. In particular, we

use keywords of a node’s TBox ontology as its ontology
summary. However, a semantic meaning may be
represented by different keywords in different ontologies,
while it is also possible that the same keyword in different
ontologies means totally different things. Ontology
comparison based on TBox keywords may not yield
satisfying results. In order to solve this problem, we extend
each concept with its semantic meanings in WordNet [22].
We use two most important relationships in WordNet –
synonyms and hypernym – to expand concepts. In this way,
semantically related concepts would have overlaps.

After extension, a node’s ontology summary set may get

a number of unrelated words, because each concept may
have many senses (meanings), but not all of them are related
to the ontology context. A problem causing the ambiguity of
concepts is that the extension does not make use of any
relations in the ontology, which are important clues to infer
the semantic meanings of concepts. To further refine the
semantic meaning of a particular concept, we utilize
relations between the concepts in an ontology to remove
unrelated senses from the summary set. Since the dominant
semantic relation in an ontology is the subsumption relation,
we use the subsumption relation and the sense
disambiguation information provided by WordNet to refine
the summary. It is based on a principle that a concept’s
semantic meaning should be consistent with its super-class’s
meaning. We use this principle to remove those inconsistent
meanings. For every concept in an ontology, we check each
of its senses; if a sense’s hypernym has overlap with this
concept’s parent’s senses, then we keep this sense and the
overlapped parent’s sense to the ontology summary set.
Otherwise, they are removed from the set. In this way we
can refine the summary and reduce imprecision.

To compare two ontologies, we define an ontology

similarity function based on the refined ontology summary.
The definition is based on Tversky’s “Ratio Model” [23]
which is evaluated by set operations and is in agreement
with an information-theoretic definition of similarity [24].
Assume A and B are two nodes, and their ontology
summary are S(A) and S(B) respectively. The semantic
similarity between node A and node B is defined as:

|)A(S)B(S||)B(S)A(S||)B(S)A(S|
|)B(S)A(S|)B,A(sim








In the above equations, “∩” denotes set intersection, “–” is
set difference, while “| |” represents set cardinality, “α” and
“β” are parameters that provide for differences in focus on
the different components. The similarity sim, between A and
B, is defined in terms of the semantic concepts common to
A and B: S(A)∩S(B), the concepts that are distinctive to A:
S(A)–S(B), and the features that are distinctive to B: S(B) –
S(A). Two nodes, node A and node B are said to be
semantically related if their semantic similarity measure,

sim(A,B) exceeds the user-defined similarity threshold t
(0<t≤1).

3.2 Community construction

The construction of an ontology-based overlay is a
process of finding semantically related neighbors. A node
joins the network by connecting to one or more
bootstrapping neighbors. The bootstrapping neighbors try to
recommend some other neighbors to this new node
according to its semantic property. If the bootstrapping
neighbors do not have such recommendation information at
hand, they will issue a neighbor-discovery query for the new
node. The neighbor discovery query contains the new
joining node’s ontology summary in the form of a Bloom
Filter [25]. The bootstrapping neighbors then use strategies
(such as [13-15]) to efficiently propagate the neighbor
discovery query to the network. Nodes receiving the query
compute their semantic similarity with the new node based
on the semantic summary. Semantically related nodes then
return positive replies to the new node. If there are not
enough neighbors discovered within the hops limited by
TTL, the new node will turn to the index overlay for
assistance. After the neighbor-discovery process, a new
node is positioned to the right community. Inside the
community overlay, nodes randomly connect with their
neighbors. Queries looking for particular contents can be
forwarded inside the community overlay using flooding- or
random-walk- based simple forwarding algorithms.

Because of the dynamic property of the large-scale

network, and the evolution of nodes’ ontology property,
neighbor discovery for a node is not once and for all, but
rather the first-step of the topology adaptation scheme. A
node should keep updating its neighbor links according to
its query experiences and other peer’s recommendations. A
peer obtains experiences by accumulating queries received
as a query forwarding router, and query results collected as
a query requestor. Personal experiences can be forwarded to
friends/peers as recommendations. Based on its experiences
and peer recommendations, a node may add or delete
neighbors according to the dynamic semantic environment.
This way, the network topology is reconfigured with respect
to peers’ semantic properties, and peers with similar
ontologies are close to each other.

4. Index Overlay

As a facilitator and complement of the community
overlay, the index overlay indexes top-level semantic
interests and unpopular semantic concepts. The popularity
of a concept is determined according to the query history.
As mentioned, OWL ontology can be divided into two parts:
TBox and ABox. Similar to a database schema, a node’s
TBox knowledge is more abstract, describing the node’s
high-level concepts and their relationships. In contrast,

ABox includes concrete data and relations, for example, the
instances of classes defined in the TBox. Index overlay
indexes TBox and ABox ontology for different purpose:
TBox indexing helps nodes locate communities while ABox
indexing assists nodes finding instances which cannot be
quickly located in the community overlay. Only unpopular
ABox instances are indexed in the index overlay.

The index overlay is constructed according to the

mechanism of the corresponding structured P2P overlay.
We employ RDFPeer’s indexing method presented by M.
Cai et al [9]. The basic idea is to divide RDF description
into triples and then index the triples in a DHT overlay. We
store each triple three times by applying a hash function to
its subject, predicate, and object. In this way, a query
providing partial information of a triple can be handled. For
TBox indexing, the three parts of a triple may be uneven: a
TBox has only a limited number of predefined predicates,
but many more objects and subjects. For example, many
classes have a subClass property; each is encoded as a triple
with predicate rdf:subClass. When indexing by the
predicate, all these triples are mapped to the same key and
therefore to the same peer of the index overlay. This causes
overloading of the peer in charge of the key. This problem
can be solved by simply not indexing the overly popular
keys; the query can be resolved by using other information
of the triple.

Peers register their top semantic interests in the form of

TBox ontology through the insert(key,value) operation in
the index overlay. The index overlay node in charging of
that key maintains a Least Recently Used (LRU) cache
storing contact information of registered peers. A neighbor
discovery query can get contacts of other peers interested in
the same ontology through this index overlay node. Then
the new node can connect with these contacts and join their
community. At the same time, the new node registers to the
index overlay by adding itself to the cache of the indexing
node. A node with multiple interests can register with
multiple indexing nodes. The index overlay also indexes
unpopular ABox instances which cannot be quickly located
inside the community.

5. Semantic Query Evaluation

With the hybrid topology constructed, semantic query

can be efficiently evaluated. Owing to the semantic locality,
in most cases, a resource discovery query can be answered
within the querying node’s local community overlay. The
semantic community reduces the search time and decreases
the network traffic by minimizing the number of messages
circulating between nodes. There are many strategies, such
as [13-15] to effectively propagate queries in an
unstructured P2P network. Popular data items are more
likely to be located quickly since they have more replicas in
the community, whereas an unpopular data item cannot be

found unless a large number or all of the peers are searched.
Also, queries for data in other semantic communities are
unlikely to be solved inside the local community overlay.
For these cases, nodes turn to the index overlay to get
assistance.

Index overlay indexes top semantic interests and

unpopular instances, thus is able to give hints to queries
which cannot be solved by the community overlay. For
example, a node can find interested community by lookup
the interest in the index overlay, then contact those nodes
returned by the index overlay. A node can also find
unpopular ABox instances from index overlay which may
not easily be found from the community overlay.

6. Peer Recommendation

Peer recommendation can further improve the efficiency
of query evaluation, and at the same time, improves the
query accuracy. The recommendation is performed in two
ways with difference functionalities: The first scheme is
push-based (or proactive) recommendation, in which peers
proactively recommend data or friends to others with similar
interests. The other recommendation scheme is pull-based
(or retroactive) in which peers get refined query results
based on previous recommendations from similar peers. The
former improves the query efficiency and reduces query
latency, while the latter enhances the accuracy of the query
results.

To realize the proactive recommendation, each peer

maintains an active recommendation cache storing queries
and corresponding results. Socially close peers (with
semantic similarity beyond a threshold t) exchange their
cached data. Because these peers are similar, one peer’s
query will probably be queried by another peer in the future.
These cached data work as good recommendations for
peers’ future query. These recommendations behave like a
cache with high hit-rate. They will greatly improve the
query efficiency by intercepting peers’ queries, so that the
queries will not be propagated to the network. Besides
queries, peers also recommend friends to each other. The
same as in social network, in a semantic community, similar
peers should share common friends.

The retroactive recommendation is mainly used in the

DHT index overlay. For ABox instances, DHT indexing has
the semantic ambiguity problem. For example, it is difficult
to figure out whether the search term palm is a company
(company: palm), a technology (operating system: palm), or
a product (PDA:palm). We solve the ambiguity problem
with community feedback recommendations. To facilitate
query refinement with the community feedback, the
indexing peers need to perform some additional tasks:
besides storing the ABox keywords, an indexing peer is also

responsible for maintaining clusters of peers related to each
sense of the keyword.

Figure 1 shows an example of a data entry stored in an
indexing peer. There are six peers related to the term, palm.
Initially when a node issues a query related to term palm
trying to find information about a PDA, all six peers are
returned to the requester as shown in Figure 1 (a). The
requester will contact each of them, although only three of
them (P1, P13, P2) are related to PDA. After the requester
contacts all these six peers and evaluates their data, it
returns its feedback (i.e., which peers have the data with
right senses) to the indexing peer. The indexing peer will
link those three related peers with the requester’s
community, as shown in Figure 1 (b). Next time, a requester
from the same community will take advantage of this
clustering and be given only the three related peers. In this
way, the precision of the query evaluation is improved and
the network traffic is reduced.

Figure 1. Example of a data entry stored in an index node

7. Experiment

Owing to the lack of access to the semantic
environment with many nodes, our system performance
evaluation falls back to simulations. We first describe the
experimental setup, and then analyze the simulation results.

7.1 Experimental setup

 As it is difficult to find representative real world
ontology data, we have chosen to generate test data
artificially. Our data does not claim to model real data, but
shall rather provide reasonable approximation to evaluate
the performance of the system. Ontology data can be
characterized by many factors such as the number of
classes, properties, and individuals; thus we have generated
the test data in multiple steps. The algorithm starts with
generating the ontology schema (TBox). Each schema
includes the definition of a number of classes and
properties. The classes and properties may form a multilevel
hierarchy. Then the classes are instantiated by creating a
number of individuals of the classes. To generate an RDF
instance triple t, we first randomly choose an instance of a
class C among the classes to be the subject: sub(t). A
property p of C is chosen as the predicate pre(t), and a value
from the range of p to be the object: obj(t). If the range of
the selected property p are instances of a class C’, then
obj(t) is a resource; otherwise, it is a literal.

The queries are generated by randomly replacing parts of
the created triples with variables. For our experiments, we
use single-triple-queries and conjunctive-triple-queries. To
create the conjunctive-queries, we randomly choose a
property p1 of class C1. Property p1 leads us to a class C2
which is the range of p1. Then we randomly choose a
property p2 of class C2. This procedure is repeated until the
range or the property is a literal value or we have created n
(n≤3) triple patterns.

In our experiments, the total number of distinguished

ontologies is 100. We assume each node uses 1 to 3
ontologies. Each ontology includes at most 10 classes. The
number of properties that each class has is at most k=3. The
number of instances of each class at each peer is less than
10. Finally, the number of triple patterns in each query we
create is either 1 or 3. In our experiment, we do not do
knowledge reasoning. In other words, we do not augment
the RDF graph by inference (forward chaining). Other
simulation parameters and their default values are listed in
Table 1.

The simulation is initialized by injecting nodes one by

one into the network until a certain network size has been
reached. The network topology created this way has power-
law properties; nodes inserted earlier have more links than
those inserted later. This property is consistent with the real
world situation, in which nodes with longer session time
have more neighbors. After the initial topology is created, a
mixture of joins, leaves, and queries are injected into the
network based on certain ratios. The proportion of join to
leave operations is kept the same to maintain the network at
approximately the same size. Inserted nodes start
functioning without any prior knowledge.

Table 1. Parameters used in the simulations

Parameter Range and default value
network size 29~215 default: 10,000
initial neighbors (node degree) 5
maximum neighbors 30
average node degree 14
TTL 1~20 default 9
ontology domains 100
ontology schemas per domain 1~10 default:8
distinct resources per domain 100
resources per node 1~10
die/leave probability per time
slice per node 0-21%, 3% default

resource change probability per
time slice per node

20%instance update, 2%
schema update

query probability per time slice
per node 5%

sample of nodes to compute
diameter 5%

The index overlay is implemented as a Pastry [6] virtual
network in Java. Each peer is assigned a 160-bit identifier,
representing 80 digits (each digit uses 2 bits) with base b=2.
After the network topology has been established, nodes
publish their TBox knowledge and some unpopular ABox
data on the overlay network. Then nodes are randomly
picked to issue queries. Each experiment is run ten times
with different random seeds, and the results are the average
of these ten sets of results.

7.2 Results

In this part, we present the experimental results which
demonstrate the performance of our searching scheme.

7.2.1 Emergence of the social community

As discussed, the topology of the peer network is a
crucial factor determining the efficiency of the search
system. We expect that our semantics-based topology
formation scheme will transform the topology into a social
community. To verify this transformation, we examine two
network statistics, the clustering coefficient and the average
network path length, as indicators of how closely the
topology has approached a “small-world” [26] topology.

The clustering coefficient (CC) is a measure of how

well connected a node’s neighbors are with each other.
According to one commonly used formula for computing
the clustering coefficient of a graph (Eq. 1), the clustering
coefficient of a node is the ratio of the number of existing
edges and the maximum number of possible edges
connecting its neighbors. The average over all |V| nodes
gives the cluttering coefficient of a graph (Eq. 2).

neighbors sbetween v' edges possible of # maximum
neighbors sbetween v' edges of #

CCv (1)


v

CCv
V
1CC (2)

The average path length (APL) is defined as the

average shortest path across all pairs of nodes (Eq. 3). The
APL corresponds to the degree of separation between peers.
For a large graph, measuring distances between all node
pairs is computationally expensive; therefore an accepted
procedure is to measure it over a random sample of nodes
[27]. In our experiment, we use a random sample of certain
percent of the graph nodes. We use Dijkstra’s algorithm to
compute the shortest distance between pairs of nodes. In our
simulated topology we intentionally make the network
strongly connected, so that any pairs of nodes have a
directed path.

)1(
,





VV

l
APL ij ji (3)

We performed experiments to measure the cluster
coefficient (CC) and average path length (APL) of our
proposed system. An interest-based ShortCut topology and a
random power-law topology with the same average node
degree are used as reference topologies. The former has
been proved to be a small-world system [28]. For the
ShortCut scheme, test results are collected after the system
has had an extensive training process, i.e., nodes have
learned as many ShortCuts as possible through query results
and the system topology has become stable.

Figures 2 and Figure 3 show plots of the clustering
coefficient and the average path length as a function of the
number of nodes in the network. We observe that both the
clustering coefficient and the average path length of our
semantic clustering are very similar to those of ShortCut.
The clustering coefficients of semantic-clustering and
ShortCut are much larger than that of the random power-law
network, while the average path length of semantic
clustering and ShortCut are almost the same as that of the
random network. This indicates the emergence of a small-
world network topology [27]. Note: Because all of the three
topologies are created by inserting nodes to the existing
system, all topologies show the power-law property to some
extent, and thus the average path length of all three
topologies are smaller than a random network. This set of
experiments verifies that firstly, well connected clusters
exist in the proposed system; due to the semantic similarity
definition, these clusters correspond to groups of users with
shared ontological interests. Secondly, there is, on average,
a short path between any two nodes in the system topology
graph; therefore, queries with relatively small TTL would
cover most of the network.

Figure 2. Comparison of clustering coefficient

Figure 3. Comparison of average path length

7.2.2 Efficiency of the hybrid topology

We expect the community overlay and the index overlay
work together to dramatically improve the system
performance. To verify this conception, we examine the
system performance in two different aspects, namely
scalability and efficiency by executing the experiment in
different network configurations. The performance is
measured using an Information Retrieval (IR) standard:
recall. Recall refers to completeness of retrieval of relevant
items, as defined below:

||
||

cumentsrelevantDo
ocumentsretrievedDcumentsrelevantDorecall 



First, we vary the number of nodes from 29 to 215 to test
the scalability of the system. The results are listed in Figure
4. Our hybrid system gets higher recall in all these different
sized networks. In addition, our recall decreases less with
the increase in network size.

Figure 4. Recall rate vs. network size

Figure 5 illustrates the system efficiency by showing the

relationship between query recall rate and query TTL. With
a small TTL, our system gets a higher recall rate, i.e.,
resolves queries faster.

As expected, the hybrid topology based on the two

overlays performs well as measured by recall rate. The
semantic community topology effectively reduces the search
space, and its ontology summary indexed by the index
overlay guides the query in the right direction. Therefore, it
can locate results faster and more accurately. This explains
why the proposed topology scales to large network size and
why it achieves higher recall with shorter TTL.

Figure 5. Recall rate vs. TTL

7.2.3 Effect of recommendation

We distinguish the two types of recommendation: the
proactive and the retroactive recommendation and examine
their effect respectively. To testify the effect of proactive
recommendation, we compare the scenario where peers
proactively exchange their recommendation cache with that
where peers do not exchange recommendation at all. We
show that our recommendation cache improves the query
performance by reducing not only query traffic but also
query latency. Figure 6 and Figure 7 demonstrate these two
aspects respectively. In this experiment, we increase the
skew degree of the query distribution from random to Zipf
[29] with α=1.25. From Figure 6 and Figure 7 we can get
two conclusions: (1) proactive recommendation
significantly reduces the query traffic and query latency. (2)
Query distribution has a significant impact on the
performance of recommendation. The more skewed the
query distribution, the more effective the recommendation
performs. According to [30], in an open and live distributed
environment, query distribution is skewed and follows a
Zipf distribution. Therefore, our recommendation scheme
would be an effective strategy to improve the system
performance.

Figure 6. Performance of proactive recommendation
(accumulated bandwidth vs. query distribution)

Figure 7. Performance of proactive recommendation

(query latency vs. query distribution)

To testify the effect of retroactive recommendation, we
create a special experimental scenario which uses a small-
sized dictionary D to generate the ontology data. We
randomly pick S words from D, representing polysemy or
homonymy (words with multiple meanings); if these words
appear in different communities, they represent different
meanings. In this experiment, we count the number of nodes
visited to find 30 results at different time period. As shown

in Figure 8, with the time going, using community feedback
may reduce the number of nodes to be explored. Because
feedback from communities helps eliminating semantic
ambiguity of the index overlay, queries are only forwarded
to the most relevant nodes. Consequently, the precision of
the search is increased.

Figure 8. Effect of retroactive recommendation

8. Related work

Most current research on searching or querying

Semantic Web uses an Information Retrieval (IR)-based
central search engine (e.g. [31–35]). The IR-based work,
such as Swoogle [32] and SWSE [33], indexes the Semantic
Web by crawling and indexing the Semantic Web RDF
documents found online and then offers a search interface
over these documents. However, the centralized server can
be a potential bottleneck when the number of users is large.
In addition, the IR-based semantic data search does not
provide structured query capability.

To address the scalability issue, researchers have

utilized P2P technologies to Semantic Web. For example,
systems such as Edutella [11] and InfoQuilt [36] use
broadcast or flooding to search RDF data, while many other
projects, like RDFPeer [9] and OntoGrid [10] attempt
applying DHT techniques to the retrieval of the ontology
encoded knowledge. The flooding- based approaches create
too much network traffic while the DHT-based approaches
cannot support complex queries.

Recently, there has appeared the idea of grouping nodes

with similar contents together to facilitate search [39, 28,
38, 39]. The latest super-peer-based Edutella [38] and
Semantic Overlay Network (SON) [40] rely on centralized
server or super-peers to cluster contents and nodes.
Preliminary work in [28] proposes to cluster nodes with
similar interest together, without discussing how to define
the interest similarity amongst peers and how to form
clusters. [39] relies on periodic message exchanges amongst
peers to keep track of other peers with similar documents,
which incurs very high message overhead. Semantic Small
Word (SSW) position peers and data objects in the semantic
space, so that peers with similar data objects form into
clusters. It then applies a dimension reduction technique on
top of the DHT to realize a semantics-based search. In SSW,
semantics of data objects is represented by a multi-attribute
vector, but not Semantic Web-based data. Applications such

as REMINDIN [41], Helios [42], and Bibster [43] add
semantic short-cuts to group nodes. The short-cut approach
relies on the presence of interest-based locality. Each peer
builds a shortcut list of nodes that answered previous
queries. To find content, a peer first queries the nodes on its
shortcut list and only if unsuccessful, floods the query.

9. Conclusions

This paper presents an effective framework for
semantic query evaluation in a large-scale distributed
network. Our system exploits the social network property to
improve the efficiency and accuracy of query evaluation. It
combines the structured and unstructured P2P topology to
form a hybrid topology that includes two types of overlays:
community overlay and index overlay. Community overlay
is formed according to nodes’ semantic similarity, so that
queries can be focused in semantically related regions only.
For queries that cannot be effectively resolved in the
semantic community, they can be solved by the index
overlay. Recommendations from peers are used to predict
future queries and disambiguate the meanings of the queries.
Simulation experiments demonstrate that this framework
improves the scalability, efficiency, and precision of search
in a large semantic heterogeneous network.

References

[1] Tim Berners-Lee (with Mark Fischetti),
“Weaving the Web, The original design and
ultimate destiny of the World Wide Web”,
Harper, 1999.

[2] T. Berners-Lee, J. Hendler, and O. Lassila, “The
Semantic Web: A new form of Web content that
is meaningful to computers will unleash a
revolution of new possibilities,” Scientific
American, May 2001.

[3] D. Fensel and M. Musen, Eds. “The Semantic
Web: A Brain for Humankind,” IEEE Intelligent
Systems, March/April 2001.

[4] T. R. Gruber, “Principles for the Design of
Ontologies Used for Knowledge Sharing.”
International Journal Human-Computer Studies,
43(5-6):907-928, 1995.

[5] B. Y. Zhao, J. D. Kubiatowicz, and A. D.
Joseph. “Tapestry: An Infrastructure for Fault-
Tolerant Wide-Area Location and Routing,”
Technical Report, UCB 2000.

[6] A. Rowstron and P. Druschel. “Pastry: Scalable,
Distributed Object Location and Routing for
Large-Scale Peer-to-Peer Systems,” in Proc. of
the IFIP/ACM CDSP, Middleware, 2001.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H.Balakrishnan. “Chord: A Scalable Peer-

to-Peer Lookup Service for Internet
Applications,” ACM SIGCOMM, 2001

[8] S. Ratnasamy, P.Francis, M.Handley, R.Karp,
and S. Shenker. “A Scalable Content-
Addressable Network,” ACM SIGCOMM,
2001.

[9] M. Cai, M. Frank, “RDFPeers: A scalable
distributed RDF repository based on a
structured peer-to-peer network”, in proc of
WWW conference, NewYork, USA, May 2004.

[10] OntoGrid project: http://www.ontogrid.net/
[11] W. Nejdl et al. “EDUTELLA: a P2P

Networking Infrastructure Based on RDF”. In
Proceedings of the 11th international conference
on World Wide Web (WWW), 2002.

[12] M. Arumugam, A. Sheth, and I. B. Arpinar.
“Towards peer-to-peer semantic web: A
distribuited environment for sharing semantic
knowledge on the web.” In Proc. of the
International World Wide Web Conference 2002
(WWW2002), Honolulu, Hawaii, USA, 2002.

[13] Juan Li and Son Vuong, "SOON: A Scalable
Self-Organized Overlay Network for Distributed
Information Retrieval", in Proceedings of the
19th IFIP/IEEE International Workshop on
Distributed Systems: Operations and
Management Managing Large Scale Service
Deployment 2008.

[14] Y. Chawathe, S. Ratnasam, L. Breslau, N.
Lanhan, S. Shenker, “Making Gnutella-like P2P
Systems Scalable”, In Proceedings of ACM
SIGCOMM’03, 2003.

[15] Juan Li, Son Vuong, "Efa: an Efficient Content
Routing Algorithm in Large Peer-to-Peer
Overlay Networks", in Proceedings of the Third
IEEE International Conference on Peer-to-Peer
Computing", 2003.

[16] F. Baader, D. Calvanese, D. L. McGuinness, D.
Nardi, P. F. Patel-Schneider: The Description
Logic Handbook: Theory, Implementation,
Applications. Cambridge University Press,
Cambridge, UK, 2003. ISBN 0-521-78176-0

[17] J. Jiang and D. Conrath, “Semantic Similarity
Based on Corpus Statistics and Lexical
Taxonomy,” in Proceeding of the Int’l Conf.
Computational Linguistics, 1997.

[18] J. Lee, M. Kim, and Y. Lee, “Information
Retrieval Based on Conceptual Distance in IS-A
Hierarchies,” J. Documentation, vol. 49, pp.
188-207, 1993.

[19] M. A. Rodriguez, M. J. Egenhofer,
"Determining Semantic Similarity Among
Entity Classes from Different Ontologies". IEEE
Transactions on Knowledge and Data
Engineering, 2003.

[20] O. Lassila and Ralph R. Swick, “W3C Resource
Description framework (RDF) Model and

Syntax Specification”, World Wide Web
Consortium, 1999.

[21] Dan Brickley and R.V.Guha. “W3C Resource
Description Framework (RDF) Schema
Specification”.
http://www.w3.org/TR/1998/WD-rdf-schema/

[22] C. Fellbaum. “WordNet: An Electronic Lexical
Database,” In Fellbaum, Christiane, MIT Press,
1998.

[23] A. Tversky. Features of similarity.
Psychological Review, 84(4):327–352, 1977.

[24] D. Lin. An information-theoretic definition of
similarity. In Proc. 15th International Conf. on
Machine Learning, pages 296–304. Morgan
Kaufmann, San Francisco, CA, 1998.

[25] B. Bloom. “Space/time tradeoffs in hash coding
with allowable errors”. Communications of the
ACM, pages 13(7):422-426, July 1970.

[26] A. L. Barabási, “Linked: How Everything is
Connected to Everything Else and What It
Means for Business, Science, and Everyday
Life.” New York, Plume, 2003.

[27] D. Watts and S. Strogatz. “Collective dynamics
of “small-world” networks.” - Nature, 1998.

[28] A. Iamnitchi, M. Ripeanu, and I. Foster. Small-
world filesharing communities. In Proceedings
of the Infocom, Hong Kong, China, 2004.

[29] G. K. Zipf, "Human Behaviour and the Principle
of Least-Effort", Addison-Wesley, Cambridge
MA, 1949.

[30] L. Adamic, B. Huberman, "Zipf’s law and the
Internet" Glottometrics, 2002.

[31] Zhang, L., Liu, Q., Zhang, J., Wang, H., Pan, Y.,
Yu, Y.: Semplore: An IR approach to scalable
hybrid query of semantic web data. In:
Proceedings of the 6th International Semantic
Web Conference, 2007.

[32] Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S.,
Peng, Y., Reddivari, P., Doshi,V., Sachs, J.:
Swoogle: a search and metadata engine for the
semantic web. In: Proc. of the 13th ACM CIKM
Conf. (2004).

[33] Hogan, A., Harth, A., Umbrich, J., and Decker,
S. “Towards a scalable search and query engine
for the web”. In Proceedings of the WWW 2007.

[34] Guha, R., McCool, R., Miller, E.: Semantic
search. In: Proc. of the 12th Intl. Conf. on World
Wide Web. (2003).

[35] Rocha, C., Schwabe, D., Aragao, M.P.: A hybrid
approach for searching in the semantic web. In:
Proc. of the 13th Intl. Conf. on World Wide
Web. (2004).

[36] M. Arumugam, A. Sheth, and I. B. Arpinar.
“Towards peer-to-peer semantic web: A
distribuited environment for sharing semantic
knowledge on the web.” In Proc. of the
International World Wide Web Conference 2002

(WWW2002), Honolulu, Hawaii, USA, 2002.
[37] M. Bawa, G. S. Manku, and P. Raghavan.

SETS: Search enhanced by topic segmentation.
In Proceedings of ACM SIGIR, pages 306–313,
July 2003.

[38] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz,
M. T. Schlosser, I. Brunkhorst, and A. Lser.
Super-peer-based routing and clustering
strategies for RDF-based peer-to-peer networks.
In Proceedings of International World Wide
Web Conference (WWW), pages 536–543, May
2003.

[39] C. H. Ng, K. C. Sia, and C. H. Chang. Advanced
peer clustering and firework query model in the
peer-to-peer network. In Proceedings of
International World Wide Web Conference
(WWW), May 2003.

[40] A. Crespo and H. Garcia-Molina. Semantic
overlay networks. Technical report, Stanford
University, 2002.

[41] X. Tempich, S. Staab, A. Wranik,
“REMINDIN’: semantic query routing in peer-
to-peer networks based on social metaphors”
International World Wide Web Conference
(WWW), New York, USA, 2004.

[42] A. Castano, S. Ferrara, Montanelli, and D.
Zucchelli. Helios: a general framework for
ontology-based knowledge sharing and
evolution in P2P systems. In IEEE Proc. of
DEXA WEBS 2003 Workshop, Prague, Czech
Republic, September 2003.

[43] A. Castano, S. Ferrara, S. Montanelli, E.
Pagani, G. Rossi, : Ontology addressable
contents in p2p networks. In: Proceedings of the
WWW’03 Workshop on Semantics in Peer-to-
Peer and Grid Computing, 2003.

Juan Li is an assistant professor in
the department of Computer Science
at North Dakota State University.
She received her Ph.D. degree in
computer science from the
University of British. Dr. Li's
research focus is distributed systems
including Peer-to-Peer systems,
mobile ad hoc networks, grid

computing, and semantic web technologies. She has
conducted extensive research in distributed query
management, semantics-based search, and P2P network, and
published many conference papers, journal papers, and book
chapters in these areas. Dr. Li has given presentations at
national and international conferences and workshops. She
is an active member of the Association for Computing
Machinery (ACM) and the IEEE Computer Society.

