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Abstract

 
 

     To locate desirable Semantic Web data in a distributed 
network, the discovering mechanism has to be not only 
semantically rich, in order to cope with complex queries, but 
also scalable to handle large numbers of information 
sources. In this paper, we propose a novel scheme that 
exploits the social property of humans, such as natural 
grouping and peer recommendation between people with 
common interests, to expedite the discovery of Semantic 
Web data in large-scale distributed networks. In this 
framework, network nodes perform local dynamic topology 
adaptations to spontaneously create communities according 
to users’ social-closeness. The basic premise of such 
semantic communities is that search requests have a high 
probability of being fulfilled within the community they 
originate from. For queries which cannot be efficiently 
solved inside the community, an index overlay built on 
Distributed Hash Table (DHT) is used to assist the search. 
Recommendations from peers with similar interests are 
employed to improve both the efficiency and the precision 
of the semantic search. Experiments with simulations 
substantiate that our techniques significantly improve the 
search efficiency, scalability, and precision.  
 
Keywords: Semantic Web, search, overlay, query, social 
behavior. 
 
 
1. Introduction   
 
     Semantic Web has been presented as an evolving 
extension of World Wide Web [1, 2, 3]. With the 
development of semantic web technologies, more and more 
semantic web data are generated and widely used in Web 
applications and enterprise information systems.  These data 
are structured with ontologies [4] for the purpose of 
comprehensive and transportable machine understanding. 
To fully utilize the large amount of semantic data, an 
effective search mechanism customized for Semantic Web 
data, especially for ontologies, is needed by human users as 
well as software agents and services. The unique semantic 
features and the inherent distributed nature of Semantic 
Web data make its discovery highly challenging. 
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Peer-to-peer (P2P) technology has been used as a 
solution to distributed resource discovery, since it scales to 
very large networks, while ensuring high autonomy and 
fault-tolerance.  The recently proposed structured P2P 
systems in the form of DHTs [5-8] are a promising approach 
for building massively distributed data management 
platforms. However, they offer few data management 
facilities, limited to Information Retrieval (IR) -style 
keyword search. Keyword search is appropriate for simple 
file-sharing applications, but is unable to deal with complex 
semantic queries which have various properties and 
sophisticated relations with each other.  

 
More recently, a few studies [9, 10] extended the DHT-

based P2P to support semantic queries. The basic idea is to 
map each keyword of a semantic entity to a key. For 
example, RDFPeer [9] indexes each RDF [20, 21] triple to 
support semantic RDF query. A query with multiple 
keywords then uses the DHT to lookup each keyword and 
returns the intersection. Systems like [8] avoid this multiple 
lookup and intersection by storing a complete keyword list 
of an object on each node. In this way, the DHTs can 
support multi-keywords queries. However, DHTs still have 
difficulty to support other richer queries, such as wildcard 
queries, fuzzy queries, and proximity queries. In addition, 
most DHT-based applications require all peers in the system 
sharing a uniform ontology schema, which is impractical in 
reality. These limitations restrict the deployment of DHTs to 
Semantic Web data discovery.  
 

To support more complex queries, many P2P systems 
[11, 12] use flooding or maintain a broadcasting structure, 
such as a tree or a super cube, to propagate the queries to the 
network. For example, to execute an RDF query, Edutella 
[11] broadcasts the query to the whole hypercube. These 
approaches can support arbitrary types of queries. However, 
the overhead of flooding and broadcast may cause 
scalability and efficiency issues.  

 
To overcome the shortcomings of existing discovery 

approaches, we propose a novel search mechanism which 
utilizes the social behavior of participating peers and 
integrates structured DHT P2P technology with unstructured 
P2P technology. In our system, each user/node is associated 
with a semantic summary representing the user’s social 
interests.  Based on the summary, we design a method to 
compute the semantic similarity between different users. 

 



 

  

The network topology is then reconfigured with respect to 
nodes’ semantic similarity, so that peers with similar 
interests are close to each other, forming a semantic 
community. The semantic community is loosely structured 
as an unstructured P2P overlay, called community overlay. 
Because it has no structure requirements, the community 
overlay is able to handle flexible complex queries. The 
semantic locality property guarantees that the query 
evaluation can be limited to relevant peers only. A 
structured DHT-based overlay is used to facilitate the 
construction of the community overlay and to assist query 
evaluations that cannot be effectively resolved by the 
community overlay.  

 
Members in the same community share similar interests 

hence are able to make recommendations to each other. A 
node can get useful information from other peers’ 
recommendations. For example, before propagating a 
question to the network, a node can first check what other 
peers recommend for similar questions. Moreover, 
recommendation feedback from semantically similar peers 
can be employed to retrieve the most relevant results thus 
improving the efficiency and precision of searching. 
Recommendations not only help disambiguate search 
requests quickly, but also personalize query results for users 
by ranking higher the results that are relevant to users’ 
semantic properties. Therefore, the search quality in terms 
of both precision and recall is improved. Finally, peers 
recommend “friends” for each other to adapt to the evolving 
network topology. 

 
With the assistance of peer recommendation, 

community overlay and directory overlay complement each 
other, providing efficient search for the system. Compared 
to search in pure structured P2P systems, our hybrid search 
system has inherent support for complex semantic query or 
partial match; in addition, the retrieved results are more 
relevant. Compared to search in pure unstructured P2P 
systems, our community-based structure saves the overhead 
of flooding the query to unrelated nodes, thus enjoying more 
scalability.  
 
     The remainder of this paper is organized as follows. 
Section 2 gives an overview of the system framework. 
Section 3 describes one main component of the system – the 
community overlay. Section 4 presents another major 
component of the system – the index overlay. Section 5 
introduces the query evaluation process. Section 6 explains 
how peer recommendations can be used to improve the 
discovery performance. In Section 7, we evaluate the 
proposed strategies a comprehensive set of simulations. 
Related work and concluding remarks are provided in 
Sections 8 and 9, respectively. 
 
 
2. System Overview   

In a human society, people naturally form all kinds of 
social networks by occupation, by interest, by location, etc. 
People always utilize these communities to gain knowledge 
or share information. In addition, people find that 
recommendations from friends (i.e., contacts of the social 
network) are more useful. The motivation behind the system 
design is based on these observations and the fact that the 
computer network is analogous to human social network. 
Both computer networks and human communities consist of 
members that are actively engaged in the sharing, 
communication and promotion of common interests. We 
believe we can exploit the social properties of the 
participants to improve sharing and discovering in the 
semantic network.   

 
The proposed system consists of two logical overlays – 

an unstructured community overlay and a structured index 
overlay – taking different roles for efficient operations of 
the system. Query evaluation is mainly performed in the 
community overlay. In a community overlay, peers are 
connected to those sharing common interests; as a result, the 
propagation of a query tends to first reach those that are 
more likely to possess the data being searched for. This 
semantic locality property enables the community overlay to 
answer most queries originated from the local community.  
Unlike DHTs, community overlay does not specify any 
requirements for the query format, hence is able to handle 
any arbitrary types of complex queries.  For the above 
reasons, a large portion of queries can be resolved inside the 
local community. However, peers are likely to have more 
diverse interests which cannot be covered by the community 
overlays they belong to. Therefore, there may exist a portion 
of queries that cannot be resolved by searching the 
community overlay alone. In this case, the index maintained 
by the index overlay can be consulted for hints about where 
to forward the query for a second try.  

 
The index overlay is built on top of DHT protocols. It 

provides a high-level directory service for the system by 
indexing abstract ontology skeletons.  The index overlay has 
two main functionalities: (1) It facilitates the construction of 
the community overlay. (2) It resolves unpopular queries or 
queries that are not covered by the community overlay. 
Unlike community overlay, index overlay does not give 
exact answers of a particular query; instead, it locates all 
peers possessing keywords of the query. Then the query will 
be broadcasted to all peers related to the keywords for 
further evaluation.  

 
The distinction of community overlay and index 

overlay is virtual. A physical node may be involved in both 
of these two overlays. Community overlay and index 
overlay benefit from each other: index overlay facilitates the 
construction of the community overlay, while feedback 
from communities improves the search precision of the 
index overlay. Working together, these two overlays 
improve the efficiency and accuracy of the system. 



 

  

Recommendations are used by both the community 
overlay and the index overlay to improve search 
performance. In the community overlay, peers share similar 
interests, therefore it is beneficial for them to recommend 
information to each other. Nodes in the community overlay 
maintain a cache to proactively exchange recommendation 
information. In the index overlay, an indexed keyword may 
have multiple meanings, not all of these meanings match the 
requestor’s intention. Simply forwarding the query to all 
peers containing the keywords is not accurate and consumes 
lots of unnecessary network bandwidth. The index overlay 
employs peers’ recommendation and feedback to solve the 
aforementioned semantic ambiguity problem. After 
receiving results from the index overlay, the requestor first 
checks the validity of the results. Then it reports its findings 
back to the index overlay nodes. The feedback will benefit 
future requesters with similar interests.  

 
In the following sections, we introduce the construction 

and usage of these two overlays and how recommendation 
can be applied to improve the efficiency and precision of 
searching in these two overlays. 
 
 
3. Community Overlay  
 

The construction of the community is a topology 
adaptation process, i.e., to make the system’s dynamic 
topology match the semantic clustering of peers. When a 
new node joins the network, existing nodes in the network 
recommend some neighbors to it according to their semantic 
similarity. A node also gradually updates its links according 
to recommendations of its neighbors and its query 
experiences, so that its topology always reflects its changing 
interests and data contents. The community topology 
enables queries to be quickly propagated among relevant 
peers. In addition, this topology allows semantically related 
nodes to establish ontology mappings. 
 
3.1 Semantic similarity 
 

     There has been extensive research [17 - 19] focusing 
on measuring the semantic similarity between two objects in 
the field of information retrieval and information 
integration. However, their methods are very comprehensive 
and computationally intensive. In this paper, we propose a 
light-weight method to compute the semantic similarity 
between two nodes.  

 
Our system supports semantic web data represented as 

OWL ontology. OWL ontology can be divided into two 
parts: the terminological box (TBox) and the assertion box 
(ABox) as defined in the description logic terminology [16]. 
TBox ontology defines the high-level concepts and their 
relationships. It is a good abstraction of the ontology’s 
semantics and structure. Therefore, we use a node’s TBox 
ontology to represent its semantic interest. In particular, we 

use keywords of a node’s TBox ontology as its ontology 
summary. However, a semantic meaning may be 
represented by different keywords in different ontologies, 
while it is also possible that the same keyword in different 
ontologies means totally different things. Ontology 
comparison based on TBox keywords may not yield 
satisfying results. In order to solve this problem, we extend 
each concept with its semantic meanings in WordNet [22]. 
We use two most important relationships in WordNet – 
synonyms and hypernym – to expand concepts. In this way, 
semantically related concepts would have overlaps.  

 
After extension, a node’s ontology summary set may get 

a number of unrelated words, because each concept may 
have many senses (meanings), but not all of them are related 
to the ontology context. A problem causing the ambiguity of 
concepts is that the extension does not make use of any 
relations in the ontology, which are important clues to infer 
the semantic meanings of concepts. To further refine the 
semantic meaning of a particular concept, we utilize 
relations between the concepts in an ontology to remove 
unrelated senses from the summary set. Since the dominant 
semantic relation in an ontology is the subsumption relation, 
we use the subsumption relation and the sense 
disambiguation information provided by WordNet to refine 
the summary. It is based on a principle that a concept’s 
semantic meaning should be consistent with its super-class’s 
meaning. We use this principle to remove those inconsistent 
meanings. For every concept in an ontology, we check each 
of its senses; if a sense’s hypernym has overlap with this 
concept’s parent’s senses, then we keep this sense and the 
overlapped parent’s sense to the ontology summary set. 
Otherwise, they are removed from the set. In this way we 
can refine the summary and reduce imprecision.  

 
To compare two ontologies, we define an ontology 

similarity function based on the refined ontology summary. 
The definition is based on Tversky’s “Ratio Model” [23] 
which is evaluated by set operations and is in agreement 
with an information-theoretic definition of similarity [24]. 
Assume A and B are two nodes, and their ontology 
summary are S(A) and S(B) respectively. The semantic 
similarity between node A and node B is defined as: 
 

|)A(S)B(S||)B(S)A(S||)B(S)A(S|
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
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

 
 
In the above equations, “∩” denotes set intersection, “–” is 
set difference, while “| |” represents set cardinality, “α” and 
“β” are parameters that provide for differences in focus on 
the different components. The similarity sim, between A and 
B, is defined in terms of the semantic concepts common to 
A and B: S(A)∩S(B), the concepts that are distinctive to A: 
S(A)–S(B), and the features that are distinctive to B: S(B) – 
S(A).  Two nodes, node A and node B are said to be 
semantically related if their semantic similarity measure, 



 

  

sim(A,B) exceeds the user-defined similarity threshold t 
(0<t≤1). 
 
3.2 Community construction 
 

The construction of an ontology-based overlay is a 
process of finding semantically related neighbors. A node 
joins the network by connecting to one or more 
bootstrapping neighbors. The bootstrapping neighbors try to 
recommend some other neighbors to this new node 
according to its semantic property. If the bootstrapping 
neighbors do not have such recommendation information at 
hand, they will issue a neighbor-discovery query for the new 
node. The neighbor discovery query contains the new 
joining node’s ontology summary in the form of a Bloom 
Filter [25]. The bootstrapping neighbors then use strategies 
(such as [13-15]) to efficiently propagate the neighbor 
discovery query to the network. Nodes receiving the query 
compute their semantic similarity with the new node based 
on the semantic summary. Semantically related nodes then 
return positive replies to the new node. If there are not 
enough neighbors discovered within the hops limited by 
TTL, the new node will turn to the index overlay for 
assistance. After the neighbor-discovery process, a new 
node is positioned to the right community. Inside the 
community overlay, nodes randomly connect with their 
neighbors. Queries looking for particular contents can be 
forwarded inside the community overlay using flooding- or 
random-walk- based simple forwarding algorithms. 

 
Because of the dynamic property of the large-scale 

network, and the evolution of nodes’ ontology property, 
neighbor discovery for a node is not once and for all, but 
rather the first-step of the topology adaptation scheme. A 
node should keep updating its neighbor links according to 
its query experiences and other peer’s recommendations. A 
peer obtains experiences by accumulating queries received 
as a query forwarding router, and query results collected as 
a query requestor. Personal experiences can be forwarded to 
friends/peers as recommendations. Based on its experiences 
and peer recommendations, a node may add or delete 
neighbors according to the dynamic semantic environment. 
This way, the network topology is reconfigured with respect 
to peers’ semantic properties, and peers with similar 
ontologies are close to each other. 
 
 
4. Index Overlay  
 

As a facilitator and complement of the community 
overlay, the index overlay indexes top-level semantic 
interests and unpopular semantic concepts. The popularity 
of a concept is determined according to the query history. 
As mentioned, OWL ontology can be divided into two parts: 
TBox and ABox. Similar to a database schema, a node’s 
TBox knowledge is more abstract, describing the node’s 
high-level concepts and their relationships. In contrast, 

ABox includes concrete data and relations, for example, the 
instances of classes defined in the TBox. Index overlay 
indexes TBox and ABox ontology for different purpose: 
TBox indexing helps nodes locate communities while ABox 
indexing assists nodes finding instances which cannot be 
quickly located in the community overlay. Only unpopular 
ABox instances are indexed in the index overlay. 

 
The index overlay is constructed according to the 

mechanism of the corresponding structured P2P overlay. 
We employ RDFPeer’s indexing method presented by M. 
Cai et al [9]. The basic idea is to divide RDF description 
into triples and then index the triples in a DHT overlay. We 
store each triple three times by applying a hash function to 
its subject, predicate, and object. In this way, a query 
providing partial information of a triple can be handled. For 
TBox indexing, the three parts of a triple may be uneven: a 
TBox has only a limited number of predefined predicates, 
but many more objects and subjects. For example, many 
classes have a subClass property; each is encoded as a triple 
with predicate rdf:subClass. When indexing by the 
predicate, all these triples are mapped to the same key and 
therefore to the same peer of the index overlay. This causes 
overloading of the peer in charge of the key. This problem 
can be solved by simply not indexing the overly popular 
keys; the query can be resolved by using other information 
of the triple.   

 
Peers register their top semantic interests in the form of 

TBox ontology through the insert(key,value)  operation in 
the index overlay. The index overlay node in charging of 
that key maintains a Least Recently Used (LRU) cache 
storing contact information of registered peers. A neighbor 
discovery query can get contacts of other peers interested in 
the same ontology through this index overlay node. Then 
the new node can connect with these contacts and join their 
community. At the same time, the new node registers to the 
index overlay by adding itself to the cache of the indexing 
node. A node with multiple interests can register with 
multiple indexing nodes. The index overlay also indexes 
unpopular ABox instances which cannot be quickly located 
inside the community. 

 
 

5. Semantic Query Evaluation  
 
With the hybrid topology constructed, semantic query 

can be efficiently evaluated. Owing to the semantic locality, 
in most cases, a resource discovery query can be answered 
within the querying node’s local community overlay. The 
semantic community reduces the search time and decreases 
the network traffic by minimizing the number of messages 
circulating between nodes. There are many strategies, such 
as [13-15] to effectively propagate queries in an 
unstructured P2P network. Popular data items are more 
likely to be located quickly since they have more replicas in 
the community, whereas an unpopular data item cannot be 



 

  

found unless a large number or all of the peers are searched. 
Also, queries for data in other semantic communities are 
unlikely to be solved inside the local community overlay. 
For these cases, nodes turn to the index overlay to get 
assistance.   

 
Index overlay indexes top semantic interests and 

unpopular instances, thus is able to give hints to queries 
which cannot be solved by the community overlay. For 
example, a node can find interested community by lookup 
the interest in the index overlay, then contact those nodes 
returned by the index overlay.  A node can also find 
unpopular ABox instances from index overlay which may 
not easily be found from the community overlay. 

 
 

6. Peer Recommendation  
 

Peer recommendation can further improve the efficiency 
of query evaluation, and at the same time, improves the 
query accuracy. The recommendation is performed in two 
ways with difference functionalities: The first scheme is 
push-based (or proactive) recommendation, in which peers 
proactively recommend data or friends to others with similar 
interests. The other recommendation scheme is pull-based 
(or retroactive) in which peers get refined query results 
based on previous recommendations from similar peers. The 
former improves the query efficiency and reduces query 
latency, while the latter enhances the accuracy of the query 
results.    

 
To realize the proactive recommendation, each peer 

maintains an active recommendation cache storing queries 
and corresponding results. Socially close peers (with 
semantic similarity beyond a threshold t) exchange their 
cached data. Because these peers are similar, one peer’s 
query will probably be queried by another peer in the future. 
These cached data work as good recommendations for 
peers’ future query.  These recommendations behave like a 
cache with high hit-rate. They will greatly improve the 
query efficiency by intercepting peers’ queries, so that the 
queries will not be propagated to the network. Besides 
queries, peers also recommend friends to each other. The 
same as in social network, in a semantic community, similar 
peers should share common friends.   

 
The retroactive recommendation is mainly used in the 

DHT index overlay. For ABox instances, DHT indexing has 
the semantic ambiguity problem.  For example, it is difficult 
to figure out whether the search term palm is a company 
(company: palm), a technology (operating system: palm), or 
a product (PDA:palm). We solve the ambiguity problem 
with community feedback recommendations. To facilitate 
query refinement with the community feedback, the 
indexing peers need to perform some additional tasks: 
besides storing the ABox keywords, an indexing peer is also 

responsible for maintaining clusters of peers related to each 
sense of the keyword.  

Figure 1 shows an example of a data entry stored in an 
indexing peer. There are six peers related to the term, palm.  
Initially when a node issues a query related to term palm 
trying to find information about a PDA, all six peers are 
returned to the requester as shown in Figure 1 (a). The 
requester will contact each of them, although only three of 
them (P1, P13, P2) are related to PDA. After the requester 
contacts all these six peers and evaluates their data, it 
returns its feedback (i.e., which peers have the data with 
right senses) to the indexing peer. The indexing peer will 
link those three related peers with the requester’s 
community, as shown in Figure 1 (b). Next time, a requester 
from the same community will take advantage of this 
clustering and be given only the three related peers. In this 
way, the precision of the query evaluation is improved and 
the network traffic is reduced. 

 

 
 

Figure 1. Example of a data entry stored in an index node 
 
 
7. Experiment 
 

Owing to the lack of access to the semantic 
environment with many nodes, our system performance 
evaluation falls back to simulations. We first describe the 
experimental setup, and then analyze the simulation results. 

 
7.1 Experimental setup  
 
     As it is difficult to find representative real world 
ontology data, we have chosen to generate test data 
artificially. Our data does not claim to model real data, but 
shall rather provide reasonable approximation to evaluate 
the performance of the system. Ontology data can be 
characterized by many factors such as the number of 
classes, properties, and individuals; thus we have generated 
the test data in multiple steps. The algorithm starts with 
generating the ontology schema (TBox). Each schema 
includes the definition of a number of classes and 
properties. The classes and properties may form a multilevel 
hierarchy. Then the classes are instantiated by creating a 
number of individuals of the classes. To generate an RDF 
instance triple t, we first randomly choose an instance of a 
class C among the classes to be the subject: sub(t). A 
property p of C is chosen as the predicate pre(t), and a value 
from the range of p to be the object: obj(t). If the range of 
the selected property p are instances of a class C’, then 
obj(t) is a resource; otherwise, it is a literal.  



 

  

The queries are generated by randomly replacing parts of 
the created triples with variables. For our experiments, we 
use single-triple-queries and conjunctive-triple-queries. To 
create the conjunctive-queries, we randomly choose a 
property p1 of class C1. Property p1 leads us to a class C2 
which is the range of p1. Then we randomly choose a 
property p2 of class C2. This procedure is repeated until the 
range or the property is a literal value or we have created n 
(n≤3) triple patterns.  

 
In our experiments, the total number of distinguished 

ontologies is 100. We assume each node uses 1 to 3 
ontologies. Each ontology includes at most 10 classes. The 
number of properties that each class has is at most k=3. The 
number of instances of each class at each peer is less than 
10. Finally, the number of triple patterns in each query we 
create is either 1 or 3. In our experiment, we do not do 
knowledge reasoning. In other words, we do not augment 
the RDF graph by inference (forward chaining). Other 
simulation parameters and their default values are listed in 
Table 1. 

 
The simulation is initialized by injecting nodes one by 

one into the network until a certain network size has been 
reached. The network topology created this way has power-
law properties; nodes inserted earlier have more links than 
those inserted later. This property is consistent with the real 
world situation, in which nodes with longer session time 
have more neighbors. After the initial topology is created, a 
mixture of joins, leaves, and queries are injected into the 
network based on certain ratios. The proportion of join to 
leave operations is kept the same to maintain the network at 
approximately the same size. Inserted nodes start 
functioning without any prior knowledge. 

 

Table 1.  Parameters used in the simulations 

Parameter Range and default value 
network size 29~215  default: 10,000 
initial neighbors (node degree) 5 
maximum neighbors  30 
average node degree 14 
TTL 1~20 default 9 
ontology domains 100 
ontology schemas per domain 1~10 default:8 
distinct resources per domain 100 
resources per node 1~10 
die/leave probability per time 
slice per node 0-21%, 3% default 

resource change probability per 
time slice per node 

20%instance update, 2% 
schema update  

query probability per time slice 
per node 5% 

sample of nodes to compute 
diameter 5% 

 

The index overlay is implemented as a Pastry [6] virtual 
network in Java. Each peer is assigned a 160-bit identifier, 
representing 80 digits (each digit uses 2 bits) with base b=2. 
After the network topology has been established, nodes 
publish their TBox knowledge and some unpopular ABox 
data on the overlay network. Then nodes are randomly 
picked to issue queries. Each experiment is run ten times 
with different random seeds, and the results are the average 
of these ten sets of results. 

 
 

7.2 Results  
 

In this part, we present the experimental results which 
demonstrate the performance of our searching scheme. 

 
7.2.1 Emergence of the social community  
      

As discussed, the topology of the peer network is a 
crucial factor determining the efficiency of the search 
system. We expect that our semantics-based topology 
formation scheme will transform the topology into a social 
community. To verify this transformation, we examine two 
network statistics, the clustering coefficient and the average 
network path length, as indicators of how closely the 
topology has approached a “small-world” [26] topology.  

 
The clustering coefficient (CC) is a measure of how 

well connected a node’s neighbors are with each other. 
According to one commonly used formula for computing 
the clustering coefficient of a graph (Eq. 1), the clustering 
coefficient of a node is the ratio of the number of existing 
edges and the maximum number of possible edges 
connecting its neighbors. The average over all |V| nodes 
gives the cluttering coefficient of a graph (Eq. 2).  
 

neighbors sbetween v' edges possible of # maximum
neighbors sbetween v' edges of #
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The average path length (APL) is defined as the 

average shortest path across all pairs of nodes (Eq. 3). The 
APL corresponds to the degree of separation between peers. 
For a large graph, measuring distances between all node 
pairs is computationally expensive; therefore an accepted 
procedure is to measure it over a random sample of nodes 
[27]. In our experiment, we use a random sample of certain 
percent of the graph nodes. We use Dijkstra’s algorithm to 
compute the shortest distance between pairs of nodes. In our 
simulated topology we intentionally make the network 
strongly connected, so that any pairs of nodes have a 
directed path. 
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We performed experiments to measure the cluster 
coefficient (CC) and average path length (APL) of our 
proposed system. An interest-based ShortCut topology and a 
random power-law topology with the same average node 
degree are used as reference topologies. The former has 
been proved to be a small-world system [28]. For the 
ShortCut scheme, test results are collected after the system 
has had an extensive training process, i.e., nodes have 
learned as many ShortCuts as possible through query results 
and the system topology has become stable.  
 

Figures 2 and Figure 3 show plots of the clustering 
coefficient and the average path length as a function of the 
number of nodes in the network. We observe that both the 
clustering coefficient and the average path length of our 
semantic clustering are very similar to those of ShortCut. 
The clustering coefficients of semantic-clustering and 
ShortCut are much larger than that of the random power-law 
network, while the average path length of semantic 
clustering and ShortCut are almost the same as that of the 
random network. This indicates the emergence of a small-
world network topology [27].  Note: Because all of the three 
topologies are created by inserting nodes to the existing 
system, all topologies show the power-law property to some 
extent, and thus the average path length of all three 
topologies are smaller than a random network. This set of 
experiments verifies that firstly, well connected clusters 
exist in the proposed system; due to the semantic similarity 
definition, these clusters correspond to groups of users with 
shared ontological interests. Secondly, there is, on average, 
a short path between any two nodes in the system topology 
graph; therefore, queries with relatively small TTL would 
cover most of the network. 

 

 
 

Figure 2. Comparison of clustering coefficient 
 

 

 
 

Figure 3. Comparison of average path length 
 

7.2.2 Efficiency of the hybrid topology  
      

We expect the community overlay and the index overlay 
work together to dramatically improve the system 
performance. To verify this conception, we examine the 
system performance in two different aspects, namely 
scalability and efficiency by executing the experiment in 
different network configurations. The performance is 
measured using an Information Retrieval (IR) standard: 
recall. Recall refers to completeness of retrieval of relevant 
items, as defined below:  
 

||
||

cumentsrelevantDo
ocumentsretrievedDcumentsrelevantDorecall 

  

 
 

First, we vary the number of nodes from 29 to 215 to test 
the scalability of the system. The results are listed in Figure 
4. Our hybrid system gets higher recall in all these different 
sized networks. In addition, our recall decreases less with 
the increase in network size.  
 

 
 

Figure 4. Recall rate vs. network size 
 
Figure 5 illustrates the system efficiency by showing the 

relationship between query recall rate and query TTL. With 
a small TTL, our system gets a higher recall rate, i.e., 
resolves queries faster. 

 
As expected, the hybrid topology based on the two 

overlays performs well as measured by recall rate. The 
semantic community topology effectively reduces the search 
space, and its ontology summary indexed by the index 
overlay guides the query in the right direction. Therefore, it 
can locate results faster and more accurately. This explains 
why the proposed topology scales to large network size and 
why it achieves higher recall with shorter TTL.  

 

 
 

Figure 5. Recall rate vs. TTL 



 

  

7.2.3 Effect of recommendation 
      

We distinguish the two types of recommendation: the 
proactive and the retroactive recommendation and examine 
their effect respectively. To testify the effect of proactive 
recommendation, we compare the scenario where peers 
proactively exchange their recommendation cache with that 
where peers do not exchange recommendation at all. We 
show that our recommendation cache improves the query 
performance by reducing not only query traffic but also 
query latency. Figure 6 and Figure 7 demonstrate these two 
aspects respectively. In this experiment, we increase the 
skew degree of the query distribution from random to Zipf 
[29] with α=1.25. From Figure 6 and Figure 7 we can get 
two conclusions: (1) proactive recommendation 
significantly reduces the query traffic and query latency. (2) 
Query distribution has a significant impact on the 
performance of recommendation. The more skewed the 
query distribution, the more effective the recommendation 
performs. According to [30], in an open and live distributed 
environment, query distribution is skewed and follows a 
Zipf distribution. Therefore, our recommendation scheme 
would be an effective strategy to improve the system 
performance. 
 

 
 

Figure 6. Performance of proactive recommendation  
(accumulated bandwidth vs. query distribution) 

 
 

 
 
Figure 7. Performance of proactive recommendation  

(query latency vs. query distribution) 
 

To testify the effect of retroactive recommendation, we 
create a special experimental scenario which uses a small-
sized dictionary D to generate the ontology data. We 
randomly pick S words from D, representing polysemy or 
homonymy (words with multiple meanings); if these words 
appear in different communities, they represent different 
meanings. In this experiment, we count the number of nodes 
visited to find 30 results at different time period. As shown 

in Figure 8, with the time going, using community feedback 
may reduce the number of nodes to be explored. Because 
feedback from communities helps eliminating semantic 
ambiguity of the index overlay, queries are only forwarded 
to the most relevant nodes. Consequently, the precision of 
the search is increased. 

 

 
Figure 8. Effect of retroactive recommendation 

 

8. Related work 
 
Most current research on searching or querying 

Semantic Web uses an Information Retrieval (IR)-based 
central search engine (e.g. [31–35]). The IR-based work, 
such as Swoogle [32] and SWSE [33], indexes the Semantic 
Web by crawling and indexing the Semantic Web RDF 
documents found online and then offers a search interface 
over these documents. However, the centralized server can 
be a potential bottleneck when the number of users is large. 
In addition, the IR-based semantic data search does not 
provide structured query capability. 

 
To address the scalability issue, researchers have 

utilized P2P technologies to Semantic Web. For example, 
systems such as Edutella [11] and InfoQuilt [36] use 
broadcast or flooding to search RDF data, while many other 
projects, like RDFPeer [9] and OntoGrid [10] attempt 
applying DHT techniques to the retrieval of the ontology 
encoded knowledge. The flooding- based approaches create 
too much network traffic while the DHT-based approaches 
cannot support complex queries.  

 
Recently, there has appeared the idea of grouping nodes 

with similar contents together to facilitate search [39, 28, 
38, 39]. The latest super-peer-based Edutella [38] and 
Semantic Overlay Network (SON) [40] rely on centralized 
server or super-peers to cluster contents and nodes. 
Preliminary work in [28] proposes to cluster nodes with 
similar interest together, without discussing how to define 
the interest similarity amongst peers and how to form 
clusters. [39] relies on periodic message exchanges amongst 
peers to keep track of other peers with similar documents, 
which incurs very high message overhead. Semantic Small 
Word (SSW) position peers and data objects in the semantic 
space, so that peers with similar data objects form into 
clusters. It then applies a dimension reduction technique on 
top of the DHT to realize a semantics-based search. In SSW, 
semantics of data objects is represented by a multi-attribute 
vector, but not Semantic Web-based data. Applications such 



 

  

as REMINDIN [41], Helios [42], and Bibster [43] add 
semantic short-cuts to group nodes. The short-cut approach 
relies on the presence of interest-based locality. Each peer 
builds a shortcut list of nodes that answered previous 
queries. To find content, a peer first queries the nodes on its 
shortcut list and only if unsuccessful, floods the query. 
 
 
9. Conclusions 
 

This paper presents an effective framework for 
semantic query evaluation in a large-scale distributed 
network. Our system exploits the social network property to 
improve the efficiency and accuracy of query evaluation. It 
combines the structured and unstructured P2P topology to 
form a hybrid topology that includes two types of overlays: 
community overlay and index overlay. Community overlay 
is formed according to nodes’ semantic similarity, so that 
queries can be focused in semantically related regions only. 
For queries that cannot be effectively resolved in the 
semantic community, they can be solved by the index 
overlay. Recommendations from peers are used to predict 
future queries and disambiguate the meanings of the queries. 
Simulation experiments demonstrate that this framework 
improves the scalability, efficiency,  and precision of search 
in a large semantic heterogeneous network. 
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