
SimpleHealth – a Mobile Cloud Platform to Support

Lightweight Mobile Health Applications for Low-end

Cellphones

Peyman Emamian

Computer Science Department

North Dakota State University

Fargo, USA

peyman.emamian@ndsu.edu

Juan Li

Computer Science Department

North Dakota State University

Fargo, USA

j.li @ndsu.edu

Abstract— Mobile medical applications are increasingly being

used by patients and consumers. However, due to their complexity,

these applications are normally only accessible to smartphone

users. People using low-end cellphones cannot benefit from this

new technology. The goal of this paper is to expand health service

platform to lower-end cellphones, so that people in

underdeveloped regions can benefit from it. In particular, we

propose a scalable platform for lightweight health applications

with novel and proactive client communication. Through the

effective support of a multi-layered cloud platform, we assure the

scalability, elasticity and reliability of the server side. With simple

Short Messaging Service (SMS) channels, health workers and

patients can access complex healthcare services with low-end

cellphones. The multi-layered architecture provides separation of

concerns and decoupling of communication and business logic.

Furthermore, our proposed plug-in model can expand and

customize functionalities. Extensive experimental results have
demonstrated the effectiveness of the proposed platform.

Keywords— health application; short message service; cloud;

mobile application

I. INTRODUCTION

Cellphones are increasingly being used as a common
platform for wide varieties of health and wellness-related
applications. Nowadays, a cellphone user can download over
40,000 mobile applications that offer health, fitness, and medical
applications [1]. These applications can be used for medical and
healthcare education and recommendation, clinical practice and
intervention, collecting and collating health and wellness data
for analysis, telemedicine and remote healthcare. They will offer
new opportunities to improve patient care and reduce healthcare
costs.

Mobile health application is particularly important for rural
regions around the world, especially in underdeveloped
countries and areas. These areas normally do not have access to
basic healthcare services and most of the bulk of healthcare
delivery falls on local health workers who have limited skills
and expertise. The last few years has witnessed unprecedented
growth in the usage of cellphones in the underdeveloped world,
thus linking millions of previously unconnected people. The
ubiquity usage of cellphone in developing world provides new

and innovative opportunities for healthcare efforts in in these
regions. An exploratory study of 488 mobile phone users at
Karnataka, South India shows that cellphone was acceptable in
the rural Indian as a tool for receiving health information and
supporting healthcare through mHealth interventions [3]. In
another study performed in rural areas of Kenya [4], researchers
concluded that use the short messaging service (SMS) is the
most cost effective way of communication. Cellphones-based
applications have demonstrated their potential for enhancing
rural healthcare [2].

Despite of the existence of so many mobile health and
telemedicine efforts such as Micromedex [5], Doctor on
Demand [6], MyChart [7], most of the existing approaches are
not directly applicable and sustainable for developing countries
because of the following reasons: firstly, most of the existing
applications rely on the increasing computational power of high-
end smart phones which may not be economically viable for
users in rural areas. Secondly, these systems require cellphones
connected to the Internet which may not be available and/or
affordable in rural regions. Thirdly, most of these existing
applications are not aligned with the realities of rural settings in
developing countries. On the other hand, there have also
appeared some lightweight healthcare messaging applications
(e.g., FrontlineSMS [8]) designed for low-end cellphones. These
systems offer communications platforms which are affordable
and highly available for users in underdeveloped regions.
However, they normally lack complete functionalities and
services required by a complex healthcare application.

To address the aforementioned limitations of existing mobile
health approaches, we have designed and implemented
SimpleHealth, a practical mobile cloud platform to support
lightweight mobile health applications for low-end cellphones in
rural areas. This platform enables health workers and patients to
access complex healthcare services through simple Short
Messaging Service (SMS) channels with low-end cellphones.
SMS, also known as text messaging, uses standardized
communication protocol to enable mobile phones to exchange
messages no more than 140 characters long. SMS can send
information in near-real time to thousands of people and is the
most widely used data application in the world. SimpleHealth
platform integrates cloud computing with the SMS mobile

2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom)

978-1-5090-6704-6/17/$31.00 ©2017 IEEE

communication to overcome limitations related to SMS-based
low-end mobile phone (e.g., system scalability and availability,
device’s computing power, storage, battery life, and bandwidth).

The rest of the paper is organized as follows. Section II
surveys the related work. Section III describes the details of the
proposed platform and its enabling technologies. Section IV
presents the implementation. Evaluation of the proposed
mechanisms are presented in Section V. Concluding remarks are
provided in Sections VI.

II. RELATED WORK

Many efforts have been devoted to design light-weight
mobile healthcare application. For example, the ALIVE project
[9, 10] has shown that simple email reminders can have a
significant impact on improving diet and physical activity of
individuals. Many healthcare providers have used text
messaging to send reminders, recommendations, and education
materials to patients. For example, Delaware Physicians Care,
Inc. (DPCI), has used text messaging to remind patients with
diabetes about their scheduled blood test appointments [11]. In
another project, they uses text messaging to remind pregnant
moms of their prenatal and postnatal appointments as well as to
provide them with educational information. Another health-
related text messaging tool is presented in [12] that has been
designed to help educating the youth in the San Francisco area
about sexual health. Users can send a simple text message to get
information about what to do after unprotected sex or they can
get guidelines and information about sexually transmitted
infections, including HIV.

ELMR (Efficient Light-weight Mobile Records) system [13]
offers a lightweight database access protocol for accessing and
updating health records from remote cell phones. The proposed
database access protocol for health care applications is
optimized and simplified to be applied under extreme bandwidth
constrained SMS service. The system has been used in
healthcare delivery in AIDS care centers in Ghana and South
Africa where health workers need to frequently access health
databases using low end devices [13].

A sensor-based heart monitoring system was proposed in
[14]. In the case of irregularity in user's heart rate, an SMS is
sent to the user and/or the user's doctor or relatives. Similarly,
[15] proposes a remote health monitoring system that monitors
several vital signs of the patient (such as oxygen percentage in
blood, heart rate, and temperature). If any of these parameters
are not in the predefined range, an SMS will be sent to the user's
doctor/emergency number. Text messaging has shown to be a
successful health intervention enabler for smoking cessation
programs [16, 17], depression treatment [18], obesity
prevention, alcohol recovery [19], and asthma treatment and
education [20] among others.

SMS-based m-health systems are also used to assist the work
on health providers. For example, the work proposed in [21] can
help health workers in rural areas of India communicate more
effectively with doctors. The health workers collect the
symptoms of the patients; then they use their cell phones to send
the symptoms to a remote server where they are stored; The
doctors can asynchronously access the server, review each
patient's record, ask more questions about the patient, and finally

do the diagnosis and initiate the treatment. The server then sends
the prescription back to the health worker via SMS.

Mobile applications that are more sophisticated than a
simple text messaging-based system normally require more
complicated hardware and software components. For example,
UbiFit Garden [22] is a health-related behavioral change system
that uses on-body sensors and a mobile application user interface
to encourage regular physical activity. The computer system has
a client-server architecture. The XML requests are generated by
the Android client and sent to the server via network. On the
other side, when the data is received via HTTP request, the
server creates a reply in XML format and sends it back to the
client via HTTP response.

Although there are various light-weight mobile health
applications and different kinds of implementations, a general-
purpose platform/framework that can provide scalable and
efficient services is still missing. The goal of this paper is to
solve this problem.

III. SYSTEM DESIGN

The major goal of the proposed framework is to make the
healthcare service platform scalable, easily expandable, and
lightweight at the client side. This framework would enable
complex healthcare functionality on low end devices that are
incapable of interacting with rich application interfaces. For
example, not all devices can communicate with Web
applications or applications that need to be installed on the
device. Moreover, not all devices have enough amount of
memory or processing power to support browsers or user
programs. Furthermore, a client that is producing data could be
an entity other than human, for example a sensor or a Web
service that is generating data in the system. Our framework
utilizes cloud computing to implement complex health
applications in the cloud. All of the major processing work must
be done in a backend cloud so that the service can be easily
updated and scaled. Then the client application can be simple
and lightweight. With this approach, we can benefit from
complicated health applications on low-end devices. Thanks to
the ubiquity of SMS service for mobile phones, we choose SMS
as the communication medium, although the system is also
capable of communication using other approaches.

A. Overview

Fig. 1 shows the architecture of the proposed mobile cloud
platform. As shown in the figure, we adopt a layered architecture
to break the system into modules that communicate with each
other while having minimum coherence with each other. This
architecture results in separation of concerns and better
scalability of the whole system. Communication between
components of different layer is performed by sending and
receiving messages; therefore, scaling up or down one
component is hidden from the other components and does not
affect any other module in the system. Moreover, the system
supports plug-ins which assures that any additional feature can
be added as a separate plug-in. The plug-in-able approach in the
cloud makes it easy to add new features or functionalities to the
program without having to change the core functionalities. This
also makes the introduction and propagation of errors harder and

2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom)

less frequent throughout the system and therefore the system
core functionalities would not be misused.

Although our current implementation is to empower the
healthcare applications by exploiting SMS communication, our
communication layer can extend the input to any means of
communication, such as Twitter or Web services. As long as
there is an adapter unit inside the communication layer that can
convert the input to an understandable form by the system, any
device with any communication format can communicate with
the system. In the following section, we resent the system
components in detail.

B. Communication Layer

As the top layer, communication layer is responsible for all
inbound/outbound communications. It includes an SMS

gateway, and can also include web service, or any gateways for

other external communications. Regardless of the source, any

input to the system would be converted to a unified format

understandable by all of the other components/layers of the

system. The input message contains the body of the message and

all of the meta information. In the same respect, adapters convert

responses from the lower level to the format understandable by

the external communication device. Every external

communication media has its own adapter unit in the

communication layer to do the conversion. This approach
unifies the interactions with the lower levels and provides a layer

of abstraction. Therefore, the lower layers will not be affected

by the changes in the communication layer.
Communication layer is also responsible for handling the

sessions and cookies if available. Some external communication
media have virtual sessions that provide more information about
the communication. One of the important components of the
communication layer is the persistence unit. It records any
communication to/from the system and stores converted input
message from the adapter along with the original

communication data. The communication history that is
recorded by the persistence unit is used for consistency, fault
tolerance, accounting, security and statistical analysis.

C. Dispatch Layer

In a nutshell, dispatch layer is responsible for transferring
input message to the appropriate plug-in. Also, it manages how
plug-ins respond to the input message (e.g. timeout for
generating a response.) All these are done through the dispatch
handler. The dispatch layer also has a registry of plug-ins that
contains the matching criteria for each plug-in. The source of the
message and its content are the general criteria to decide which
plug-in to handle the message. The dispatch handler consists of
multiple dispatcher units. Each unit has a queue of input
messages to process and pass to the plug-in layer. Dispatch load
balancer manages all the dispatchers and distributes the input
messages to them, and if necessary, it creates new instances of
dispatchers to handle more messages or it discards the idle
instances. The dispatch load balancer scales up or down the
number of dispatchers in use based on the system load so the
dispatch handler can respond to the input messages in the queue
as fast as possible and can prevent possible queue overflows or
delays in responses.

D. Plug-in Layer

A plug-in represents a specific functionality in the system

(e.g., the “drug information plug-in” provides information about

a drug). The plug-in layer makes sure that each plug-in responds
to the input within the time limit. In addition, this layer is

responsible for assuring that errors are handled properly and in

case of a physical or logical failure, the plug-in action is passed

to another instance of that particular plug-in.

Main processing of plug-ins is done inside a worker

machine. A worker machine could be a virtual or physical

machine that runs multiple instances of one or more plug-ins. A

plug-in manager inside a worker machine manages the number

of instances and communicates with the load balancer to

instantiate the plug-ins that are needed in the system or too kill

idle plug-in instances. The plug-in load balancer makes sure that
there are enough instances of each plug-in available to respond

to the requests from the other layers. It also routes the plug-in

actions to the appropriate worker machine. The plug-in layer

might contain other components to provide additional

functionalities.

The job scheduler provides chronological functionalities to

the system. Recurrent or scheduled jobs are handled by this unit.

For example, drug intake reminders are scheduled by a plug-in

request. The timeout handler unit is responsible for handling any

timeout event generated by the plug-ins and it triggers the

necessary actions when timeouts occur. It works closely with the
load balancer such that it helps to identify the plug-ins that are

faulty or not responsive. In that case, the load balancer resends

the plug-in actions to another plug-in. If a component in the

other layers needs to communicate with the plug-in layer, it must

use the load balancer, so that the consistency of the

communication between the layers is maintained and the load

balancer can provide the best performance for the system.

SMS Gateway Web Service TEL-API Twilio-API

Input/output Persistence

SMS Gateway

Adaptor

Web Service

Adaptor

TEL-API

Adaptor

Twilio-API

Adaptor

Plug-in

Registry

Dispatch Load Balancer

Dispatcher-1 Dispatcher-2 ... Dispatcher-n

Dispatch Handler

Plug-in 1 Plug-in 2

Plug-in 3 Plug-in 4

Plug-in Manager

Plug-in 5 Plug-in 6

Plug-in 7 Plug-in 8

Plug-in Manager

Plug-in x Plug-in y

Plug-in m Plug-in n

Plug-in Manager

Virtual Worker Machine -1 Virtual Worker Machine -2 Virtual Worker Machine -N

...

Plug-in Load BalancerTimeout Handler Job Scheduler

C
o

m
m

u
n

ic
at

io
n

s
L

ay
er

D
is

p
at

ch
 L

ay
er

P
lu

g
-i

n
 L

ay
er

Mobile Healthcare Cloud

Fig. 1. The mobile Cloud architecture

2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom)

IV. SYSTEM IMPLMENATION

A prototype of SimpleHealth mobile service is implemented
and deployed on the Amazon Web Services. The implemented
prototype contains the base framework for storing messages and
interacting with inputs and also includes one module that
provides information about drugs. The features of the system
can easily be expanded by adding new modules that interact
differently with the user using the same framework.

Amazon Web Services platform is chosen as the cloud
platform to provide utilities like queuing and scaling options. As
for the implementation framework, we used Java Spring to
implement the components of the system thanks to its ease of
use, clear documentation and rich libraries integrated with the
framework. In addition, using Spring makes dependency
injection easier by opting in for Inversion of Control (IoC)
pattern and auto-wiring reusable sub-components into each of
the components.

Each component of the system that interacts with the Internet
or other components of the system through HTTP
communication is using the MVC (Model-View-Controller)
architectural pattern [23]. In the context of Amazon Web
Services, we are dividing the application into two sub-systems.
The first sub-system is a web layer that interacts with inputs of
the system and receives messages from outside. The second sub-
system is the worker layer that processes the inputs and takes
appropriate measures and actions such as sending a response or
updating data in the system. The connection between these two
sub-systems is Amazon's Simple Queue Service (SQS) that
ensures reliable communication between these two components.

Fig.2 illustrates the information flow of the system. When
the communication layer receives a SMS message from a SMS
gateway, it passes it to the SMS adapter. The adapter converts
the raw input to input message understandable by the system.
Then the persistence unit stores the input message in the
database and passes it to the dispatch layer. The plug-in handler
adds the input message to a queue in one of the dispatcher units

and based on the plug-in registry criteria, the dispatcher unit
decides what plug-in(s) must handle this input message. The
dispatcher unit creates a dispatch action and passes it to the plug-
in load balancer in the plug-in layer. The plug-in load balancer
passes the dispatch action to one of the plug-in instances inside
a worker machine (or instantiates one if none exists). The plug-
in processes a dispatch action. The processing may include
looking up data, storing data, checking for a threshold, deciding
on the next action, triggering an event, etc. Afterwards, the plug-
in closes the action (before timeout) and return the action to the
dispatch layer. The response handler in the dispatch layer
receives a closed (or timed out) dispatch action and checks if the
actions is correctly completed. If necessary, the response
handler passes appropriate messages to the communication layer
to be sent out to the device. Finally, the adapter creates the
appropriate message for the gateway or web service to be sent.

V. EVLUATION

We have performed extensive experiments to evaluate the
performance of the proposed system.

In order to evaluate the scalability-related performance of
the implemented prototype we apply load testing techniques to
generate loads similar to the real environment to observe the
behavior of the system under different situations. In particular,
we use JMeter [24] to generate random targeted traffic
comparable to actual traffic for similar applications. The input
data is generated randomly from a set of actual requests that are
answerable by the application. We used our drug lookup plugin
to answer questions about drugs. Although requests were sent to
the system randomly, all of the questions are valid and have a
valid answer in our drug information database. We simulate
request spikes for the application at certain periods of time. We
also repeat the exact test based on the number of requests at each
point of time in the test. JMeter and related plugins provide the
environment to create an exact number of Requests Per Second
(RPS) for our tests. We can create a model of desired load at
each time period of the test. As a result, we are able to ensure
the consistency and repeatability in our test, and exactly measure
the behavior of the system at an exact load. Moreover, we can
repeat the test in the same exact condition.

Fig. 3 shows the scheduled number of requests at each point
of time (Requests Per Second or RPS) used for load testing. This
model is generated using the JMeter plugin to shape and
generate random requests. It uses a data set of actual drug names
to test the system in random order. We simulate an environment
that mimic the traffic of a real text-based messaging systems. An

Virtual Worker Machine #1
SMS Gateway

SMS Gateway

Adapter
Amazon S3

Persistence &

Processing Unit

Plug-in Load

Balancer

Plug-in

Instance #2

raw SMS

text

formatted

output MSG

raw SMS

text

formatted

output MSG

input

message

dispatcher unit queue

data ID

store data dispatch action

and data ID

closed action/timeout

output MSG

content

Fig. 2. Job flow in the Amazon AWS cloud

Fig. 3. Load Test - Predefine Requests for Load Testing

0

10

20

30

40

50

60

#
 o

f
re

q
u

es
ts

/s
ec

Elapsed Time

Expected RPS

2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom)

outside factor such as outbreaks of infectious diseases triggers a
sudden growth of inputs in the system. It is usually in a short
time period but the throughput spike is in orders of magnitude
and could potentially put the system in the denial of service
(DoS) state. As shown in the figure, we increase the input
rapidly and then keep the input load on the stress level for some
time. Both of these phenomena have an impact on how the
application handles the load. We expect: first, the application
should be able to cope with the increasing traffic and the
increasing rate of the traffic increase. Second, the application
should also be able to maintain the stress level for longer period
of time as a sign of handling and reusing resources used in the
previous requests/responses. Finally, the system should recover
when the load is decreased.

Fig. 4 shows the input traffic that was actually used in the
testing based on the real-time measurements. The figure shows
both successful and failed transactions per second. We can see
that none of the requests have failed and the application was able
to successfully handle all of the requests.

It is important that our application responds to the requests
under a certain time threshold regardless of the traffic
throughput or the number of running instances, thus
guaranteeing a uniform and consistent user experience for the
customers of the application. For this project, ideally the
majority of the response times should be under 200 milliseconds
to provide a smooth and fast user experience. Given the nature
of the communication for text messaging, response time up to a
few seconds is acceptable.

Fig.5 presents the results of our load test in the response
latency. The figure shows the number of requests that have a
specific latency (in milliseconds). Ideally, we want lower
latency for each request and having the majority of the requests
(higher number on Y axis) to have a small latency (closer to the
left on X axis). Although there are a few requests with higher
latency, but the majority of the requests fall under 120
milliseconds. The result of our measured test shows that 98.10%
of the tested requests (total of 2372 requests) had a latency less
than or equal to 120 milliseconds. Furthermore, 99.74% of the
requests were responded under 200 milliseconds. The request
load used for this test in Fig. 5 includes all of the request and
response times used for load testing of the application. As can
be seen from the figure that when the application was under
stress of high traffic during a short period of time, it was still
able to maintain the ideal response time.

Given the platform that we are using for handling the
incoming traffic, we handle each request in a separate thread,
hence increasing traffic triggers more threads in the application
to respond to the requests. We are using multiple layers of
components in our architecture. This gives us the flexibility to
scale any of those components individually. The gateway layer
has its own load balancer and it can scale up/out as much as
needed. This accommodates for the incoming SMS traffic
without worrying about the processing time of plugins or any
other concerns on the other layers. On the other hand, the plugin
layer uses a load balancer as well as queues. It can scale based
on the number of items that are waiting in the queue to be
processed and independent of the gateway layer. For example,
we use just two instances respond to the gateway layer requests
because its process is easy and it is reliant on the network speed.
On the other hand, we need more processing power on the plugin
layer. Naturally, we may have ten instances to process the items
in the queue and to answer to the users. Using different layers of
scalability, we prevent the errors rom one layer to be extended
to another layer. For example, if a plugin uses a third-party
service to do certain processing, in case of failure or slowness
on that service, we only need to add more instances to the
plugins layer without affecting the gateway layer. Usually the
size of the queue will trigger these actions. As a result, users will
not notice the delay in the response time and the system provides
a consistent user experience.

During our experiments, the scaling policy that we put in
place increased the number of instances and added two more
servers to handle the peak load of the inputs. It also terminated
the instances and reduced to only one server when the load
returned to minimum. Our scaling policy is based on parameters
of the system running the instances. We used CPU utilization
and response delay of instances provided by AWS instances to
actively determine whether new instances are needed or we
should terminate idle instances. An alternative approach would
be to measure the input traffic of the instances. Since SMS
messages are relatively the same size, an increase in the input
traffic would correlate to the number of inputs, hence the
requirement for instances.

Although the number of servers used in our proof of concept
application is relatively low, it is comparable to real world SMS
applications. Moreover, the combination of the scaling policy
and the load balancers in each layer theoretically would have the

Fig. 5. Load Test - Response Latency

0
100
200
300
400
500
600
700
800
900

77 94.5 112 129.5 147 164.5 182 199.5 217 234.5

#
 o

f
re

q
u

es
ts

Latency (ms)

Fig. 4. Load Test – Actual transactions

0

10

20

30

40

50

60

0
:0

0
:0

4

0
:0

0
:0

9

0
:0

0
:1

4

0
:0

0
:1

9

0
:0

0
:2

4

0
:0

0
:2

9

0
:0

0
:3

5

0
:0

0
:4

0

0
:0

0
:4

6

0
:0

0
:5

1

0
:0

0
:5

6

0
:0

1
:0

2

0
:0

1
:1

0

0
:0

1
:2

0

0
:0

1
:3

0

0
:0

1
:4

0

0
:0

1
:4

8

0
:0

1
:5

3

#
 o

f
tr

an
sa

ct
io

n
s/

se
c

Elapsed Time

successful transactions per second

failed transactions per second

2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom)

same consistent behavior if the number of the nodes were higher.
The Amazon Web Services components such as load balancers
and SQS (Simple Queue Service) guarantee the same behavior.

Elasticity shows the elastic behavior of the system. When the
traffic is more than the amount that could be handled by one
instance, the application should scale out and initiate new
instances to properly handle the traffic. On the other hand, when
the traffic is less than the processing power of the system, it
should scale in to preserve resources and cut the cost. Therefore,
only sufficient processing power is used at any input level while
the efficiency and responsiveness of the application is
guaranteed to be at the desired threshold as shown in Fig. 5.

We are using Amazon's internal signals such as CPU usage
and response delays to decide whether we should scale out and
create more instances or we should scale in and shutdown the
unused instances. During low traffic, specifically after a peak
traffic, we shut down the unused or lightly-used instances to
save resources. The scaling policy in this situation is based on
the amount of time an instance is idle, or alternatively the
amount of traffic that the instance receives in a certain period of
time. For example, if an instance has received less than 10
requests per minute in the last 5 minutes, it is a candidate for
shutdown. After an instance-shutdown there is a grace period
that scale in policy is put to hold (e.g. 5 minutes.) The grace
period is necessary because it can prevent shutting down too
many instances all together. This would be a regular problem for
equally load balanced instances, since all of the instances get
roughly the same number of requests at any time.

VI. CONCLUSTIONS

This paper presents a cloud-based platform to enable
lightweight mobile health application focusing on light
communication and scalable server side processing. The
proposed approach is in particular advantageous for low-end
devices with basic capabilities such as text messaging. However,
the proposed framework is generic and expandable to support
other technologies. The cloud-based framework offers great
scalability and flexibility in that the system can efficiently grow
in terms of the number of users and features of the system.
Moreover, the cloud computing platform enhances availability
and fault tolerance which are vital for a robust mobile health
application. Furthermore, the proposed multi-layered
architecture makes the design modular and less error-prone. The
separation of concerns results in enhanced system scalability.

REFERENCES

[1] Krebs, Paul, and Dustin T. Duncan. "Health app use among US mobile
phone owners: a national survey." JMIR mHealth and uHealth 3.4 (2015):

e101.

[2] Kumar, Arvind, Amey Purandare, Jay Chen, Arthur Meacham, and

Lakshminarayanan Subramanian. "ELMR: lightweight mobile health
records." In Proceedings of the 2009 ACM SIGMOD International

Conference on Management of data, pp. 1035-1038. ACM, 2009.

[3] DeSouza, Sherwin I., M. R. Rashmi, Agalya P. Vasanthi, Suchitha Maria
Joseph, and Rashmi Rodrigues. "Mobile phones: The next step towards

healthcare delivery in rural India?." PloS one 9, no. 8 (2014): e104895.

[4] Eriksson, Evanjeline. "A case study about cell phone use by people in

rural Kenya." (2008).

[5] https://www.micromedexsolutions.com/

[6] www.doctorondemand.com/

[7] https://mychart.centracare.com/

[8] http://www.frontlinesms.com/

[9] Block, Gladys, Barbara Sternfeld, Clifford Block, Torin Block, Jean

Norris, Donald Hopkins, Charles Quesenberry, Gail Husson, and Heather
Clancy. "Development of Alive!(A Lifestyle Intervention Via Email), and

its effect on health-related quality of life, presenteeism, and other
behavioral outcomes: randomized controlled trial." Journal of medical

Internet research 10, no. 4 (2008): e43.

[10] Sternfeld, Barbara, Clifford Block, Charles P. Quesenberry, Torin J.
Block, Gail Husson, Jean C. Norris, Melissa Nelson, and Gladys Block.

"Improving diet and physical activity with ALIVE: a worksite
randomized trial." American journal of preventive medicine 36, no. 6

(2009): 475-483.

[11] Text messaging-a new way for delaware physicians care to help its

members. http://www.businesswire.com, June 2008.

[12] Erin Allday. Health department answers questions via text messages.
http://www.sfgate.com/health, April 2006.

[13] Kumar, Arvind, Amey Purandare, Jay Chen, Arthur Meacham, and

Lakshminarayanan Subramanian. "ELMR: lightweight mobile health
records." In Proceedings of the 2009 ACM SIGMOD International

Conference on Management of data, pp. 1035-1038. ACM, 2009.

[14] Altini, Marco, Julien Penders, and Herman Roebbers. "An Android-based
body area network gateway for mobile health applications." In Wireless

Health 2010, pp. 188-189. ACM, 2010.

[15] Wyne, Mudasser F., Vamsi K. Vitla, Praneethkar R. Raougari, and Abdul
G. Syed. "Remote patient monitoring using GSM and GPS technologies."

Journal of computing sciences in colleges 24, no. 4 (2009): 189-195.

[16] Bramley, Dale, Tania Riddell, Robyn Whittaker, Tim Corbett, R-B. Lin,
Mary Wills, Mark Jones, and Anthony Rodgers. "Smoking cessation

using mobile phone text messaging is as effective in Maori as non-Maori."
(2005).

[17] Obermayer, Jami L., William T. Riley, Ofer Asif, and Jersino Jean-Mary.
"College smoking-cessation using cell phone text messaging." Journal of

American College Health 53, no. 2 (2004): 71-78.

[18] Joyce, David, and Stephan Weibelzahl. "Text-messaging as a means to
lowering barriers to help seeking in students with depression." In

Proceedings of IADIS International Conference e-Society, Dublin,
Ireland, pp. 211-214. 2006.

[19] Krishna, Santosh, Suzanne Austin Boren, and E. Andrew Balas.

"Healthcare via cell phones: a systematic review." Telemedicine and e-
Health 15, no. 3 (2009): 231-240.

[20] Yun, Tae-Jung, Hee Young Jeong, Tanisha D. Hill, Burt Lesnick, Randall

Brown, Gregory D. Abowd, and Rosa I. Arriaga. "Using SMS to provide
continuous assessment and improve health outcomes for children with

asthma." In Proceedings of the 2nd ACM SIGHIT International Health
Informatics Symposium, pp. 621-630. ACM, 2012.

[21] Mukherjee, Chinmoy, Komal Gupta, Rajarathnam Nallusamy, and Sumit

Kalra. "A system to provide primary healthcare services to rural India
more efficiently and transparently." In Proceedings of the 1st

International Conference on Wireless Technologies for Humanitarian
Relief, pp. 379-384. ACM, 2011.

[22] Consolvo, Sunny, David W. McDonald, Tammy Toscos, Mike Y. Chen,

Jon Froehlich, Beverly Harrison, Predrag Klasnja et al. "Activity sensing
in the wild: a field trial of ubifit garden." In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pp. 1797-1806.
ACM, 2008.

[23] Model-view-controller (mvc) software design pattern definition.
https://en.wikipedia.org/ wiki/Model-view-controller, April 2016.

[24] Halili, Emily H. Apache JMeter: A practical beginner's guide to

automated testing and performance measurement for your websites. Packt
Publishing Ltd, 2008.

2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom)

