
Building Distributed Index for Semantic Web Data

Juan Li
Computer Science Department
North Dakota State University

j.li@ndsu.edu

Abstract— With the rapid growth of Semantic Web, more and
more Semantic Web data are generated and widely used.
Efficient search and management of the Semantic Web data is
becoming a very important issue. In this paper, we present
Semantic Web data indexing scheme over a fully decentralized
P2P network. Ontological knowledge is decomposed into
atomic elements and then indexed with a Distributed Hash
Table (DHT) overlay. Ontology reasoning, integration, and
searching are all based on the index. A complex SPARQL
query can be evaluated by performing relational operations
such as select, project, and join on combinations of the atoms.
A set of experiments have been made to show the effectiveness
and efficiency of the proposed indexing scheme.

Keywords-index; Semantic Web; overlay network; ontology

I. INTRODUCTION
The Semantic Web is an evolving extension of the World

Wide Web (WWW) in which Web content can be expressed
not only in natural language, but also in a format that can be
read and used by software agents, thus permitting them to
find, share and integrate information more easily [1,2].
Proposed by Tim Berners-Lee, inventor of the Web and
HTML, the Semantic Web is his vision the future of the
WWW [3]. The Semantic Web relies on ontologies that
structure underlying data for the purpose of comprehensive
and transportable machine understanding. Ontology is
defined as “an explicit specification of a conceptualization”
[4]. It is (meta)data schema, providing a controlled
vocabulary of concepts, each with an explicitly defined and
machine-processable semantics. By defining shared and
common domain theories, ontologies help both people and
machines to communicate concisely, supporting the
exchange of semantics and not only syntax.

To publish and retrieve Semantic Web data, the World
Wide Web Consortium (W3C) developed several
recommendations: the Resource Description Framework
(RDF [5,6]), the Web Ontology Language (OWL [7]), and
the SPARQL query language [8]. RDF is a data model for
information representation and exchange on Semantic Web.
RDF makes statements about resources in the form of
subject-predicate-object expressions, called triples in RDF
terminology. The subject denotes the resource which has a
Universal Resource Identifier (URI). The predicate denotes
traits or aspects of the resource and expresses a relationship
between the subject and the object. The object is the actual
value, which can either be a resource or a literal.

OWL is a Web ontology language which is used to
publish and share explicit and common descriptions of
domain knowledge and provide support for efficient
knowledge management. OWL has three increasingly-
expressive sub-languages: OWL-Lite, OWL-DL, and OWL-
Full, each geared toward fulfilling different application
requirements. Description Logics (DL) is the logic
foundation of the OWL. DLs are typically a decidable subset
of First Order Logic, and are tailored towards Knowledge
Representation (KR) [9]. They are suitable for representing
structured information about concepts, concept hierarchies
and relationships between concepts. All varieties of OWL
use RDF for their syntax.

SPARQL is an RDF query language providing a graph
pattern matching based paradigm for flexible RDF data
graphs. Theoretically, graph pattern matching is more
expensive than SQL and XQuery/XPath evaluation [10].

With the mature of Semantic Web technologies, more
and more semantic web data are generated and widely used
in Web applications and enterprise information systems. To
fully utilize the large amount of semantic data, an effective
indexing mechanism customized for semantic web data,
especially for ontologies, is needed by human users as well
as software agents and services. However, the above
mentioned unique semantic features and the inherent
distributed nature of semantic web data make its storage and
retrieval highly challenging.

In this paper, we describe a distributed index structure, in
which semantic web data indexes are distributed among a
fully decentralized P2P overlay. This permits good
scalability as storage and accessing load are distributed over
all participants. The ontological framework is based on an
efficient P2P indexing system that indexes the dispersed
resource ontology knowledge with a decentralized DHT
overlay. Ontological knowledge is decomposed into atomic
elements and then indexed with DHTs. Ontology reasoning,
integration, and searching are all based on the index.
SPARQL queries can be evaluated by performing relational
operations such as select, project, and join on combinations
of the atoms. A key advantage of this ontological indexing
scheme is its ability to index in different granularities, as we
distinguish knowledge in different levels of abstraction.

The rest of this paper is organized as follows. In section
2, we describe how to publish the metadata information in
different granularities on a DHT overlay. In Section 3, we
illustrate how to solve complex SPARQL queries with

2009 International Conference on Advanced Information Networking and Applications

1550-445X/09 $25.00 © 2009 IEEE

DOI 10.1109/AINA.2009.45

660

2009 International Conference on Advanced Information Networking and Applications

1550-445X/09 $25.00 © 2009 IEEE

DOI 10.1109/AINA.2009.45

660

examples. We report a performance and scalability
evaluation in Section 4. In Section 5, we conclude this paper.

II. DISTRIBUTED INDEXING SCHEME
The main purpose of an index is to reduce the number of

direct accesses to the data while searching. Given a large-
scale distributed semantic data repository, it is infeasible to
do a thorough search. The indexing on the distributed
repositories speeds up the searching process by only pushing
down queries to information sources we can expect to
contain an answer. For this purpose, we use a DHT-based
P2P network which implements a distributed ontology
repository for storing, indexing and querying semantic
ontology data. The index corresponds to the queries used to
retrieve the data. Since Semantic Web is represented with
RDF syntax and complex structures can be easily encoded in
a set of RDF triples, our indexing is based on RDF triples in
the format of (spo), where s is the subject, p is the predicate
and o is the object.

As mentioned, Description Logics (DL) is the logic
foundation of the OWL.A DL knowledgebase includes a
Terminology Box (T-Box) and an Assertion Box (A-Box).
The T-Box is a finite set of terminological axioms, which
includes all axioms for concept definition and descriptions of
domain structure, for example a set of classes and properties.
The A-Box is a finite set of assertional axioms, which
includes a set of axioms for the descriptions of concrete data
and relations, for example, the instances of the classes
defined in the T-Box. T-Box statements tend to be more
permanent within a knowledge repository. In contrast, A-
Box statements are much more dynamic in nature. Generally
speaking, there are many more A-Box instances than T-Box
concepts.

One advantage of our ontological indexing is its ability to
handle different granularities. We distinguish T-Box
knowledge and A-Box knowledge in each peer’s local
repository as distinguishing between schema information and
the data themselves. In this way, indices can be created based
on these two types of knowledge. By the combination of
these two indexing schemes an application on top can choose
which scheme fits the needs of the system best. The system
will be able to scale to hundreds of thousands of nodes and to
large amounts of ontology data and queries.

A. A-Box indexing
The purpose of A-Box indexing is to index individual

instance information so that the right instance can be
efficiently located. We employ RDFPeer’s indexing method
presented by M. Cai et al [11]. The basic idea is to divide
RDF description into triples and index the triples in a DHT
overlay. We store each triple three times by applying a hash
function to its subject, predicate, and object. In this way, a
query providing partial information of a triple can be
handled. The insertion operation of a triple t is performed as
follows:
Insert(t)≡Insert(SHA1Hash(t.subject), t),

Insert(SHA1Hash(t.predicate), t),
 Insert(SHA1Hash(t.object), t)

For example, the statement
t: {< Billy>, <teaches>, < cs213 >} is first indexed by
subject, and sends the following message to the overlay:
Insert {key, {(“subject”, <Billy>),

 (“predicate”, <teaches >),
 (“object”, < cs213>)}}

 where key=SHA1Hash(“< Billy>”)
In the message, the first attribute-value pair (“subject”, <

Billy>) is the routing key pair, and key is the SHA1 hash
value of the subject value. Similarly, the triple is indexed by
predicate and object as well. The target DHT node stores the
assertion and possibly generates new assertions by applying
the entailment rules. These new assertions have to be sent
out to other nodes. For example, transitive properties, such as
ancestorsOf, will have a chaining effect. Thus, after finishing
this process, the entire set of A-Box knowledge is accessible
in a well-defined way over the community overlay. With
this indexing scheme, triples can be retrieved from the DHT
by fixing one part of the triple and using this part as a
retrieval key.

A-Box indexing keeps each instance triple, thus queries
can be accurately forwarded to the instance level.
Applications with large storage requiring fast query
responses would consider using A-Box indexing. The
downside of indexing A-Box information is that the
oversized indices of individual instances may cause large
maintenance overhead, thus making the system hard to scale.
Moreover, in many cases it would not even be applicable to
index A-Box knowledge, e.g., when sources do not allow
replication of their data (which is what instance indices
essentially do). To solve this problem, we also provide
another indexing scheme: T-Box indexing.

B. A-Box indexing
Similar to a database schema, a node’s T-Box knowledge

is more abstract, describing the node’s high-level concepts
and their relationships. Basically, the T-Box knowledge
includes class elements and property elements. It also
adheres to the triple (spo) format, while here the subject s is
the class (or property) in question, p is the predefined OWL
predicates describing the attribute of this class (property),
and o is the value of the attribute of related class (property).
Below is an example of a simple T-Box ontology describing
a simple teaching relationship in the triple format.

@prefix univ: <http:/www.cs.ubc.ca/~juanli/univ#>
< univ:Teacher>,< rdf:type>,<owl: class>
< univ:Teacher>, <rdfs:subClassOf>, < univ:People>
< univ:Course>, < rdf:type>, <owl:class>
<univ:teach>,<rdf:type>,<owl:InverseFunctionalProperty>
< univ:teach>, <rdfs: domain>, < univ:Teacher”>
< univ:teach>, <rdfs:range>,< univ:Course”>
< univ:teach>,<owl:inverseOf>,< univ:isTaughtBy”>
<univ:isTaughtBy>,<rdf:type>,<owl:InverseFunctionalProperty>
< univ:isTaughtBy>, <rdfs: domain>, < univ:Course>
< univ:isTaughtBy>, <rdfs:range>, < univ:Teacher>
< univ:isTaughtBy>, <owl:inverseOf>, < univ:teach>

661661

 in
te

r-o
n

to
log

y
m

a
pp

ing
 loo

ku
p

g
rap

h
-pa

ttern

q
u

ery

m
a

pp
in

g
 a

xiom
s

in
term

ed
iate

re

su
lts

The T-Box definition is indexed in the triple format as
well. Classes and properties of the T-Box are indexed
separately. The indexing process is the same as A-Box
indexing – storing each triple three times by the subject,
predicate, and object respectively. The three parts of the T-
Box triple are uneven: a T-Box has only a limited number of
predefined predicates, but many more objects and subjects.
For example, many classes have a subclass property; each is
encoded as a triple with predicate rdf:subClass. When
indexing by the predicate, all these triples are mapped to the
same key and therefore to the same peer in the network. This
causes overloading of the peer in charge of the key. This
problem can be solved by simply not indexing the overly
popular keys; the query can be resolved by using other
information of the triple.

Storing the T-Box definition is only part of the indexing
task. In a VO, many nodes may use the existing T-Box
instead of defining their own. Therefore, another task of T-
Box indexing is to link the T-Box triples with nodes using
them. This is done by extracting the T-Box concepts from a
node’s ontology, and then using them as the key and the
node’s Id as the value to do indexing. Table 1 shows an
example T-Box index table maintained by a peer.

TABLE I. AN EXAMPLE T-BOX INDEX TABLE STORED IN A NODE

Concept Peers
Involved

Related T-Box triple

OS n2,n14,
n31,n…

<OS><superClasss><UNIX>
<OS><equivalentClass><OperatingSyste

m>
PC n7, … <PC><referentialClass><Computer>

Unix n5, n2 <OS><superClasss><UNIX>
CPU n14, n5 <Processor>< equivalentClass ><CPU>

own n11, n53 <ownedBy><inverseProperty><own>

run

n2, n14,
n5 n12,
n23, …

<run><equivalentProperty><execute>
<run><domain><Computer>

<run><range><OS>

T-Box indexing only stores the schema information but
ignores the individual instances. It has two functionalities: it
helps answering knowledge schema queries; it also helps
filtering the candidate result set for individual instance
queries. Compared to the instance-level A-Box indexing, T-
Box indexing does not require creating and maintaining
oversized indices since there are far fewer concepts than
instances. The down side of keeping only the schema
information is that query answering without the index
support at the instance level is much more computationally
intensive. Obviously, there is a tradeoff between query
overhead and indexing overhead. When the system has a
high requirement for fast and efficient query answering, it
has to pay more for the indexing. On the other hand, if the
system does not index the detailed knowledge, it has to
explore more nodes in searching for query results. An
application should determine the right indexing granularity
that can trade off the cost of maintaining the index against
the benefit that the index offers for queries.

III. QUERY EVALUATION
Having introduced the metadata indexing scheme, we

now turn our attention to how to utilize the index.
Particularly this section describes how to combine lookup
operations from different indexes to process queries. Our
system supports SPARQL query language. The query
evaluation process begins with the parsing of a user’s query
to SPARQL format. Then the query in terms of relations in
the user’s local ontology will be translated into sub-queries
using the semantic mapping axioms indexed into the overlay.
Then each of the sub-queries can be executed at different
sources in parallel and the query engine can collect returned
answers from the sources and combine them as the answer to
the query. This process is illustrated in Fig. 1, in which we
assume the underlining indexing is based on A-Box.

Searching based on T-Box indexing is similar and is studied
in Section 3.2.

Figure 1. Query processing

A. Processing SPARQL queries
The building block for SPARQL queries is graph patterns

which contain triple patterns. Triple patterns are RDF triples,
but with the option of query variables in place of RDF terms
in the subject, predicate, or object. A solution to a SPARQL
graph pattern with respect to a source RDF graph G is a
mapping from the variables in the query to RDF terms such
that the substitution of variables in the graph pattern yields a
sub-graph of G [32]. More complex SPARQL queries are
constructed by using projection (SELECT operator), left join
(OPTIONAL operator), union (UNION operator), and
constraints (FILTER operator) [12]. The semantics for these
operations are defined as algebraic operations over the
solutions of graph patterns [13].

1) Single triple pattern. The simplest query is to ask for
resources matching one triple pattern. To illustrate how to
perform this kind of simple SPARQL queries, imagine a
query to discover the person who teaches course cs213. In
SPARQL this query could be written as:
PREFIX sample:<http://www.cs.ubc.ca/~juanli/#sample >
SELECT ?person
WHERE {
 ?person sample:teach sample:cs213
}

In this query pattern, there is only one triple pattern and
at least one part of the triple is a constant. Since we store

662662

each triple three times based on its hashed subject, predicate,
and object values, we can resolve the query by routing it to
the node responsible for storing that constant. Then the
responsible node matches this triple against the patterns
stored locally and returns results to the requesting node. In
this example, there are two constants in the triple pattern; the
query processor can use either of them as the DHT lookup
key. For example, we can hash on the object: sample:cs213,
then use it as the key to route the query. The node in charge
of this key in the DHT overlay matches triples indexed
locally using this pattern, and sends back the matched triples.

2) Conjunctive patterns. When the graph pattern is more
complex containing multiple triples, or the query contains a
group graph pattern, then each triple pattern will be
evaluated by one or two different nodes. These nodes form a
processing chain for the query. The first triple pattern is
evaluated at the first node, the result is then sent to the next
node for further processing. This process continues until the
last triple pattern is processed. An alternative approach is to
process patterns in parallel, and all results are sent to one
node to do the final processing. A system should choose the
appropriate approach according to its application. In our
example, we use the sequential approach since sequentially
joining intermediate results saves the traffic for transferring
large amounts of unrelated data. The sequence to evaluate
the triple patterns is crucial. Many database researchers have
worked on it [14, 15]. Here, for simplicity, we assume that
we evaluate the query with the original triple pattern order,
in which adjacent triple patterns share at least one common
variable.

For a query q that has k conjunctive triple patterns (t1, t2,
…tk), the query evaluation proceeds as follows: First, t1 is
evaluated using the single triple pattern processing method
mentioned previously. The result is projected on the
variables with values that are needed in the next query
evaluation. Then the query together with the next triple
sequence number and the intermediate result is sent to the
node responsible for the next triple pattern. When a node ni
receives the query request, ni evaluates the i-th triple pattern
ti of the query using its local triple index and the intermediate
result from previous nodes. Then ni computes the
intermediate result and projects the result on columns that
are needed in the rest of the query evaluation (i.e., variables
appearing in the triple pattern ti+1 of q). This is a nested loop
join on the common column for the inner relation. The
process recursively repeats until the last triple pattern tk of q
is evaluated. Then, the last node nk simply returns the result
back to the querying node. We use an example to explain
this process. The query to find authors who write papers in
the field of P2P is listed below:
SELECT ?author
WHERE {
 ?author :create ?paper .
 ?paper :category ?cat .
 ?cat :label P2P
}

The query evaluation process is illustrated in Fig. 2. Each
event in this figure represents an event in the network, i.e.,
the arrival of a new query request. The query request consists
of three parts: (1) the original query, (2) the triple pattern to
be processed in this node, represented with that triple’s
sequence number in the original query’s triple lists, (3) the
intermediate result from previous nodes. Initially, the
intermediate result is empty (Ø).

Figure 2. Processing a query with a conjunctive pattern (Results are
represented as relational algebras. Π:Projection, б:Selection, ∞:join)

3) Value constraints. A constraint, expressed by the
keyword FILTER, is a restriction on solutions over the
graph pattern group in which the filter appears. In the
simplest case, the value constraint refers only to variables
that are bound in the current group and the constraint can be
mapped into an equivalent relational expression. In this case
the constraint may be applied simply by selecting on the
appropriate column. For example, if we have (?x :age ?y .
FILTER(?y > 30)) we need only to select ?y with value
greater than 30.

Sometimes constraints are placed in optional patterns
(explained in next section) with variables that do not appear

663663

in that block. In this case, since the bindings for that variable
are not available at the time the intermediate result is
selected, the constraint can be transferred to the results
processing step. Alternatively, if available, the bindings for
the variables in question can be joined to the intermediate
results in which they appear.

4) Optional patterns. SPARQL’s OPTIONAL operator
is used to signify a subset of the query that should not cause
the result to fail if it cannot be satisfied. It is roughly
analogous to the left outer join of relational algebra. When
processing queries with optional patterns, the intermediate
results are produced for each pattern as before, but in the
case of an optional pattern, columns that allow joining onto
the required pattern must also be projected.

A query with an optional pattern is shown below. A node
processes the first pattern, the required pattern, and gets the
intermediate result Rtmp.(Equation 1). The query together
with the intermediate result is sent to another node
responsible for the optional pattern, where the optional
pattern will be matched with the local triples and the result
Ropt is outer joined with Rtmp.
SELECT ?name ?homepage
WHERE { ?person :name ?name .

OPTIONAL { ?person :homepage ?homepage .}
}

)T(R 1namepresubtmp == σπ (1)
)(2homepage, TR preobjsubopt == σπ (2)
)(2,1 opt

left
tmpcolcol RRR ∞= π (3)

5) Disjunctive patterns. SPARQL provides a means of
combining graph patterns so that one of several alternative
graph patterns may match. If more than one of the
alternatives matches, all the possible pattern solutions are
found. Pattern alternatives are syntactically specified with
the UNION keyword. Obviously, this kind of disjunctive
query could simply be resolved by evaluating each sub-
query and then computing the union of the results. For
example, for the query listed below, the two sub-queries are
sent to different responsible nodes, which then calculate and
return the intermediate results to the querying node, where
the final result is merged.
SELECT ?name ?mbox
WHERE {
 ?person :name ?name .
 { ?person :mbox ?mbox } UNION

{ ?person :mbox_sha1sum ?mbox }
 }

B. Query optimization and relaxation
Query optimization should be performed in the query

evaluation process to improve the performance. For example,
according to the existing research [16], we can rely on
algebraic equivalences (e.g., distribution of joins and unions)
to order the evaluation sequence. We may want to separate
the unions early to parallelize the execution of the union in

several peers. Additionally, selects and projects should be
pushed down to the lowest possible places, while joins
should be evaluated closer to the intermediate peers to
reduce the size of the result set as early as possible.
Furthermore, statistics about the communication cost
between peers and the size of expected intermediary query
results can be used to decide which peer and in what order
will undertake the execution of each query operator. There
has been extensive work in query optimization [17, 14]; we
can utilize their results in our system.

The matching manager has the task of finding candidate
instances that match the specific query constraints, in
particular to take into account the concepts, attributes and
relationships. It is possible that the descriptions of different
ontologies referring to the same real-world object can be
significantly different. As a consequence, real-world objects
that are meant to be an answer to a query are not returned
because their description does not match the query due to
insufficient mappings. If a query cannot get enough results
because of this high heterogeneity, the matching manager
can relax the query constraints by partially matching the
query.

C. Query processing based on T-Box indexing
In our previous description of query evaluation, we

assume the overlay maintains A-Box indexing. In that
scenario, instance triple patterns are indexed in the overlay,
and queries for instances can be accurately forwarded to the
right peers in charge of the triples. If an application only
maintains T-Box indices, the evaluation process is different.

For schema (T-Box) queries on T-Box indexing, the
evaluation process is similar to the query evaluation process
we just explained, because T-Box indexing is detailed
enough to answer the schema query. For example, consider
the query pattern:

SELECT ?class
WHERE {

?class rdfs:subClassOf ?someClass
:teach rdfs:domain ?someClass}

It asks for the subclasses of a class which forms the
domain of a property teach. The processing of this query is
the same as the evaluation of conjunctive queries. The query
will first be hashed on property teach to find its domain
class, which will then be used to resolve the next sub-query.

T-Box indexing cannot be used directly to evaluate
queries at the instance level, but it can restrict the query to a
small set of nodes which are ontologically related to the
query. These nodes have the T-Box knowledge to understand
the query, thus are capable of answering the query. When a
node issues an instance-level query, the T-Box concepts
related to the query are extracted in the form of a keyword
list, and these keywords are used as parameters to retrieve
the relevant peers. We use an example to explain this
process. The query is shown below:

SELECT ?author
WHERE {
 ?author rdf:type :Person .
 ?author :name "Juan Li" .}

664664

First, the query processor uses the concepts Person and
name as keys to locate all nodes related to these concepts.
Then the query is sent to these nodes for further evaluation.
This way, the search scope is limited to a number of nodes
whose schemas are related to the query, although not all of
them can answer the query.

IV. EXPERIMENT
Owing to the lack of access to the semantic environment

with many nodes, our system performance evaluation falls
back to simulations.

A. Experimental setup
As it is difficult to find representative real world

ontology data, we have chosen to generate test data
artificially. Our data does not claim to model real data, but
shall rather provide reasonable approximation to evaluate the
performance of the system. Ontology data can be
characterized by many factors such as the number of classes,
properties, and individuals; thus we have generated the test
data in multiple steps. The algorithm starts with generating
the ontology schema (T-Box). Each schema includes the
definition of a number of classes and properties. The classes
and properties may form a multilevel hierarchy. Then the
classes are instantiated by creating a number of individuals
of the classes. To generate an RDF instance triple t, we first
randomly choose an instance of a class C among the classes
to be the subject: sub(t). A property p of C is chosen as the
predicate pre(t), and a value from the range of p to be the
object: obj(t). If the range of the selected property p are
instances of a class C’, then obj(t) is a resource; otherwise, it
is a literal.

The queries are generated by randomly replacing parts of
the created triples with variables. For our experiments, we
use single-triple-queries and conjunctive-triple-queries. To
create the conjunctive-queries, we randomly choose a
property p1 of class C1. Property p1 leads us to a class C2
which is the range of p1. Then we randomly choose a
property p2 of class C2. This procedure is repeated until the
range or the property is a literal value or we have created n
(n≤3) triple patterns.

Our dataset uses the following parameters: The total
number of distinguished ontologies is 100. We assume each
node uses 1 to 3 ontologies. Each ontology includes at most
10 classes. The number of properties that each class has is at
most k=3. The number of instances of each class at each peer
is less than 10. Finally, the number of triple patterns in each
query we create is either 1 or 3.

We implement a simulator of Pastry in Java on top of
which we developed our indexing and routing algorithms.
Each peer is assigned a 160-bit identifier, representing 80
digits (each digit uses 2 bits) with base b=2. After the
network topology has been established, nodes publish their
data on the overlay network. Then nodes are randomly
picked to issue queries. Each experiment is run ten times
with different random seeds, and the results are the average
of these ten sets of results.

B. Experimental results
We are mainly interested in two different questions,

related to three different aspects of the indexing and
searching scheme. First, we want to verify the efficiency of
answering typical lookup requests. Second, we need to
compare the overhead of indexing T-box and A-box as well
as the overhead of searching based on these two indexing
schemes.

Figure 3. Query lookup efficiency (network size vs. query hops)

The first experiment answers the first question showing
the number of routing hops as a function of the size of the
Pastry network. We vary the number of Pastry nodes in the
network from 29 to 214. We run two trials of experiments:
one trial issues only single-triple-queries, while the other
trial issues conjunctive-triple-queries. Fig. 3 shows the
average number of routing hops taken as a function of the
network size for both query patterns. log2bN is the expected
maximum number of hops required to route a key in a
network containing N nodes (In our experiment b=2),
therefore, in the figure “log4N” is included for comparison.
The results show that the number of route hops scales with
the size of the network as predicted: for the single triple
query, the route length is below log4N; for conjunctive
queries, the number of routing hops is below 3log4N as
expected.

The next experiment compares the performance of the T-
Box and the A-Box indexing in terms of indexing overhead
and query overhead. Each node may randomly choose n (n<3)
ontologies from 100 distinguished ontologies, and instantiate
each class with m (m<10) instances. For simplicity, each
query uses the simple single triple pattern. With this
configuration, we see from Fig. 4 that A-Box indexing incurs
much more overhead than T-Box indexing, and the
discrepancy increases as the network size increases, for
example, A-Box indexing causes several orders of
magnitude higher overhead than what TBox indexing creates
when the network size is 4096. On the other hand, if the
system can afford the cost of maintaining the large index, A-
Box indexing can improve searching efficiency. Fig. 5 shows
the query overhead in terms of cumulative query messages.
It is obvious that with A-Box indexing, processing a query
requires much less message forwarding overhead than that
based only on T-Box indexing.

665665

Figure 4. Indexing storage load of T-Box indexing and A-Box

indexing(network size vs. cumulative index (bytes))

Figure 5. Indexing storage load of T-Box indexing and A-Box indexing

(network size vs. cumulative query messages)

We have seen the differences between T-Box indexing
and A-Box indexing. For an application, there are many
factors to consider for choosing the right indexing scheme,
for example, the storage capacity of the participating nodes,
the nature of the major queries, and the organizations’
policy, and the degree of heterogeneity of the system’s
ontology.

V. RELATED WORK
Most current research on searching or querying Semantic

Web uses an Information Retrieval (IR)-based search engine
(e.g. [18–22]). The IR-based work, such as Swoogle [19] and
SWSE[20], indexes the Semantic Web by crawling and
indexes the Semantic Web RDF documents found online and
then offers a search interface over these documents.
However, the IR-based semantic data search does not
provide structured query capability.

Several groups [10, 23, 24, 25, 26, 27] have developed
technology to store RDF nodes, arcs and labels into
relational database systems, such as MySQL, Oracle, and
DB2, so that Semantic Web data can be efficiently indexed
and retrieved. They translate a SPARQL query into SQL
statements which are evaluated on the triple store in
relational databases. Our SPARQL query evaluation is based
on their research result and converts the RDF graph pattern
to relational algebra. These DB-based design strikes a careful
balance between flexibility, scalability, query facilities,
efficiency and optimization. However, taking centralized
database servers to support complex queries on web-scale
data is still a big challenge. Any server-centered architecture
will not only create physical bottlenecks, but as
communication relies on the use of ontologies will also
create semantic bottlenecks [28].

To address the scalability issue, researchers have utilized
P2P technologies to Semantic Web. For example, systems
such as Edutella [29] and InfoQuilt [30] use broadcast or
flooding to search RDF data, while many other projects, like
RDFPeer [11] and OntoGrid [31] attempt applying DHT
techniques to the retrieval of the ontology encoded

knowledge. Our indexing scheme is based on DHT as well,
but it has two unique advantages: (1) it distinguishes
semantic data in different levels of abstractions, thus is more
scalable and flexible; (2) it provides support for W3C
recommended query language SPARQL, thus is easier to be
propagated and used.

VI. CONCLUSION
With the growth of the Semantic Web data, there is a

strong need to make the semantic information accessible to
computer programs that search, filter, and convert
information for the benefit of the users. In this paper, we
introduced methods for distributed indexing and querying
Semantic Web data over P2P network. A key advantage of
this ontological indexing scheme is its ability to index in
different granularities and support complex SPARQL query
evaluation. Queries are processed in a distributed and
transparent fashion, so that the fact that the information is
distributed across different sources can be hidden from the
users. A set of experiments have been made to show the
effectiveness and efficiency of the proposed schemes.

REFERENCES
[1] Berners-Lee, Tim & James Hendler and Ora Lassila (May 17, 2001),

"The Semantic Web", Scientific American Magazine.
[2] "W3C Semantic Web Frequently Asked Questions". W3C.
[3] Herman, Ivan (2008-03-07). "Semantic Web Activity Statement".

W3C.
[4] T. R. Gruber, “Principles for the Design of Ontologies Used for

Knowledge Sharing.” International Journal Human-Computer Studies,
43(5-6):907-928, 1995.

[5] F. Manola and E. Miller. RDF primer. W3C recommendation, 2004.
[6] D. Brickley and R. V. Guha. RDF vocabulary description language

1.0: RDF schema. W3C recommendation, 2004.
[7] M. K. Smith, C. Welty, and D. L. McGuinness. OWL web ontology

language guide. W3C recommendation, 2004.
[8] E. Prud’hommeaux and A. Seaborne. SPARQL query language for

RDF. W3C recommendation, 2008.
[9] B. Nebel, “Artificial intelligence: A computational perspective.”

Principles of Knowledge Representation, Stanford, 1996.
[10] Li Ma, Chen Wang, Jing Lu, Feng Cao, Yue Pan, Yong Yu,

“Effective and Efficient Semantic Web Data Management over
DB2.”, SIGMOD’08, June , 2008.

[11] M. Cai, M. Frank, “RDFPeers: A scalable distributed RDF repository
based on a structured peer-to-peer network”, in proc of WWW
conference, NewYork, USA, May 2004.

[12] E. Sirin and B. Parsia. “SPARQL-DL: SPARQL Query for OWL-
DL.” In Proceedings of the 3rd OWL Experiences and Directions
Workshop, 2007.

[13] J. Perez, M. Arenas, C. Gutierrez: “The semantics and complexity of
SPARQL.” In Proceedings of the 5th International Semantic Web
Conference, 2006.

[14] M. JARKR, AND J. KOCH, “Query optimization in database
systems.” ACM Comput. Surv. 1984.

[15] T. Sellis, “Multiple-Query Optimization”, ACM Transactions on
Database Systems, 12(1), pp. 23-52, June 1990.

[16] G. Kokkinidis, L. Sidirourgos, and V. Christophides. “Query
Processing in RDF/S-Based P2P Database Systems.” In, Semantic
Web and Peer-to-Peer. Springer-Verlag, 2006.

[17] J. KING. “QUIST: A system for semantic query optimization in
relational databases.” In Proceedings 7th International Conference on

666666

Very Large Data Bases (Cannes, France). VLDB Endowment, 510–
517. 1981.

[18] Zhang, L., Liu, Q., Zhang, J., Wang, H., Pan, Y., Yu, Y.: Semplore:
An IR approach to scalable hybrid query of semantic web data. In:
Proceedings of the 6th International Semantic Web Conference, 2007.

[19] Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari,
P., Doshi,V., Sachs, J.: Swoogle: a search and metadata engine for the
semantic web. In: Proc. of the 13th ACM CIKM Conf. (2004)

[20] Hogan, A., Harth, A., Umbrich, J., and Decker, S. “Towards a
scalable search and query engine for the web”. In Proceedings of the
WWW 2007.

[21] Guha, R., McCool, R., Miller, E.: Semantic search. In: Proc. of the
12th Intl. Conf. on World Wide Web. (2003)

[22] Rocha, C., Schwabe, D., Aragao, M.P.: A hybrid approach for
searching in the semantic web. In: Proc. of the 13th Intl. Conf. on
World Wide Web. (2004)

[23] Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic
architecture for storing and querying RDF and RDF Schema. In: Proc.
of the ISWC2002

[24] Pan, Z., Heflin, J.: DLDB: Extending relational databases to support
semantic web queries. In: Workshop on Practical and Scalable
Semantic Systems., 2003

[25] Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An efficient SQL-
based RDF querying scheme. In: Proc. of the VLDB 2005. (2005)

[26] Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y., Pan, Y.: Minerva: A
scalable OWL ontology storage and inference system. In: Proc. of the
ASWC2006.

[27] S. Harris. SPARQL query processing with conventional relational
database systems. In International Workshop on Scalable Semantic
Web Knowledge Base System, 2005.

[28] S Staab, H Stuckenschmidt Semantic Web and Peer-to-Peer, Springer,
2006

[29] W. Nejdl et al. “EDUTELLA: a P2P Networking Infrastructure Based
on RDF”. In Proc. of the WWW 2002

[30] M. Arumugam, A. Sheth, and I. B. Arpinar. “Towards peer-to-peer
semantic web: A distribuited environment for sharing semantic
knowledge on the web.” In Proc. of the International World Wide
Web Conference 2002 (WWW2002), Honolulu, Hawaii, USA, 2002.

[31] OntoGrid project: http://www.ontogrid.net/
[32] P. Hayes: RDF semantics. W3C Recommendation
[33] http://www.w3.org/TR/owl-semantics/ (2004)

667667

