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Abstract— With the rapid growth of Semantic Web, more and 
more Semantic Web data are generated and widely used. 
Efficient search and management of the Semantic Web data is 
becoming a very important issue. In this paper, we present 
Semantic Web data indexing scheme over a fully decentralized 
P2P network. Ontological knowledge is decomposed into 
atomic elements and then indexed with a Distributed Hash 
Table (DHT) overlay. Ontology reasoning, integration, and 
searching are all based on the index. A complex SPARQL 
query can be evaluated by performing relational operations 
such as select, project, and join on combinations of the atoms. 
A set of experiments have been made to show the effectiveness 
and efficiency of the proposed indexing scheme. 
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I. INTRODUCTION 
The Semantic Web is an evolving extension of the World 

Wide Web (WWW) in which Web content can be expressed 
not only in natural language, but also in a format that can be 
read and used by software agents, thus permitting them to 
find, share and integrate information more easily [1,2]. 
Proposed by Tim Berners-Lee, inventor of the Web and 
HTML, the Semantic Web is his vision the future of the 
WWW [3].  The Semantic Web relies on ontologies that 
structure underlying data for the purpose of comprehensive 
and transportable machine understanding. Ontology is 
defined as “an explicit specification of a conceptualization” 
[4]. It is (meta)data schema, providing a controlled 
vocabulary of concepts, each with an explicitly defined and 
machine-processable semantics. By defining shared and 
common domain theories, ontologies help both people and 
machines to communicate concisely, supporting the 
exchange of semantics and not only syntax.   

To publish and retrieve Semantic Web data, the World 
Wide Web Consortium (W3C) developed several 
recommendations: the Resource Description Framework 
(RDF [5,6]), the Web Ontology Language (OWL [7]), and 
the SPARQL query language [8].  RDF is a data model for 
information representation and exchange on Semantic Web. 
RDF makes statements about resources in the form of 
subject-predicate-object expressions, called triples in RDF 
terminology. The subject denotes the resource which has a 
Universal Resource Identifier (URI). The predicate denotes 
traits or aspects of the resource and expresses a relationship 
between the subject and the object. The object is the actual 
value, which can either be a resource or a literal.  

OWL is a Web ontology language which is used to 
publish and share explicit and common descriptions of 
domain knowledge and provide support for efficient 
knowledge management. OWL has three increasingly-
expressive sub-languages: OWL-Lite, OWL-DL, and OWL-
Full, each geared toward fulfilling different application 
requirements. Description Logics (DL) is the logic 
foundation of the OWL. DLs are typically a decidable subset 
of First Order Logic, and are tailored towards Knowledge 
Representation (KR) [9]. They are suitable for representing 
structured information about concepts, concept hierarchies 
and relationships between concepts. All varieties of OWL 
use RDF for their syntax.  

SPARQL is an RDF query language providing a graph 
pattern matching based paradigm for flexible RDF data 
graphs. Theoretically, graph pattern matching is more 
expensive than SQL and XQuery/XPath evaluation [10]. 

With the mature of Semantic Web technologies, more 
and more semantic web data are generated and widely used 
in Web applications and enterprise information systems. To 
fully utilize the large amount of semantic data, an effective 
indexing mechanism customized for semantic web data, 
especially for ontologies, is needed by human users as well 
as software agents and services. However, the above 
mentioned unique semantic features and the inherent 
distributed nature of semantic web data make its storage and 
retrieval highly challenging.   

In this paper, we describe a distributed index structure, in 
which semantic web data indexes are distributed among a 
fully decentralized P2P overlay. This permits good 
scalability as storage and accessing load are distributed over 
all participants. The ontological framework is based on an 
efficient P2P indexing system that indexes the dispersed 
resource ontology knowledge with a decentralized DHT 
overlay. Ontological knowledge is decomposed into atomic 
elements and then indexed with DHTs. Ontology reasoning, 
integration, and searching are all based on the index. 
SPARQL queries can be evaluated by performing relational 
operations such as select, project, and join on combinations 
of the atoms. A key advantage of this ontological indexing 
scheme is its ability to index in different granularities, as we 
distinguish knowledge in different levels of abstraction. 

The rest of this paper is organized as follows. In section 
2, we describe how to publish the metadata information in 
different granularities on a DHT overlay. In Section 3, we 
illustrate how to solve complex SPARQL queries with 
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examples. We report a performance and scalability 
evaluation in Section 4. In Section 5, we conclude this paper. 

II. DISTRIBUTED INDEXING SCHEME  
The main purpose of an index is to reduce the number of 

direct accesses to the data while searching. Given a large-
scale distributed semantic data repository, it is infeasible to 
do a thorough search. The indexing on the distributed 
repositories speeds up the searching process by only pushing 
down queries to information sources we can expect to 
contain an answer. For this purpose, we use a DHT-based 
P2P network which implements a distributed ontology 
repository for storing, indexing and querying semantic 
ontology data. The index corresponds to the queries used to 
retrieve the data. Since Semantic Web is represented with 
RDF syntax and complex structures can be easily encoded in 
a set of RDF triples, our indexing is based on RDF triples in 
the format of (spo), where s is the subject, p is the predicate 
and o is the object. 

As mentioned, Description Logics (DL) is the logic 
foundation of the OWL.A DL knowledgebase includes a 
Terminology Box (T-Box) and an Assertion Box (A-Box).  
The T-Box is a finite set of terminological axioms, which 
includes all axioms for concept definition and descriptions of 
domain structure, for example a set of classes and properties. 
The A-Box is a finite set of assertional axioms, which 
includes a set of axioms for the descriptions of concrete data 
and relations, for example, the instances of the classes 
defined in the T-Box. T-Box statements tend to be more 
permanent within a knowledge repository. In contrast, A-
Box statements are much more dynamic in nature. Generally 
speaking, there are many more A-Box instances than T-Box 
concepts. 

One advantage of our ontological indexing is its ability to 
handle different granularities. We distinguish T-Box 
knowledge and A-Box knowledge in each peer’s local 
repository as distinguishing between schema information and 
the data themselves. In this way, indices can be created based 
on these two types of knowledge. By the combination of 
these two indexing schemes an application on top can choose 
which scheme fits the needs of the system best. The system 
will be able to scale to hundreds of thousands of nodes and to 
large amounts of ontology data and queries. 

A. A-Box indexing 
The purpose of A-Box indexing is to index individual 

instance information so that the right instance can be 
efficiently located. We employ RDFPeer’s indexing method 
presented by M. Cai et al [11]. The basic idea is to divide 
RDF description into triples and index the triples in a DHT 
overlay. We store each triple three times by applying a hash 
function to its subject, predicate, and object. In this way, a 
query providing partial information of a triple can be 
handled. The insertion operation of a triple t is performed as 
follows: 
Insert(t)≡Insert(SHA1Hash(t.subject), t),  

Insert(SHA1Hash(t.predicate), t), 
  Insert(SHA1Hash(t.object), t) 
 

For example, the statement  
t: {< Billy>, <teaches>, < cs213 >} is first indexed by 
subject, and sends the following message to the overlay: 
Insert {key, {(“subject”, <Billy>), 

      (“predicate”, <teaches >), 
      (“object”, < cs213>)}} 

        where key=SHA1Hash(“< Billy>”) 
In the message, the first attribute-value pair (“subject”, < 

Billy>) is the routing key pair, and key is the SHA1 hash 
value of the subject value.  Similarly, the triple is indexed by 
predicate and object as well. The target DHT node stores the 
assertion and possibly generates new assertions by applying 
the entailment rules. These new assertions have to be sent 
out to other nodes. For example, transitive properties, such as 
ancestorsOf, will have a chaining effect. Thus, after finishing 
this process, the entire set of A-Box knowledge is accessible 
in a well-defined way over the community overlay.  With 
this indexing scheme, triples can be retrieved from the DHT 
by fixing one part of the triple and using this part as a 
retrieval key. 

A-Box indexing keeps each instance triple, thus queries 
can be accurately forwarded to the instance level. 
Applications with large storage requiring fast query 
responses would consider using A-Box indexing. The 
downside of indexing A-Box information is that the 
oversized indices of individual instances may cause large 
maintenance overhead, thus making the system hard to scale. 
Moreover, in many cases it would not even be applicable to 
index A-Box knowledge, e.g., when sources do not allow 
replication of their data (which is what instance indices 
essentially do). To solve this problem, we also provide 
another indexing scheme: T-Box indexing. 

B. A-Box indexing 
Similar to a database schema, a node’s T-Box knowledge 

is more abstract, describing the node’s high-level concepts 
and their relationships. Basically, the T-Box knowledge 
includes class elements and property elements. It also 
adheres to the triple (spo) format, while here the subject s is 
the class (or property) in question, p is the predefined OWL 
predicates describing the attribute of this class (property), 
and o is the value of the attribute of related class (property). 
Below is an example of a simple T-Box ontology describing 
a simple teaching relationship in the triple format. 

@prefix univ: <http:/www.cs.ubc.ca/~juanli/univ#> 
< univ:Teacher>,< rdf:type>,<owl: class> 
< univ:Teacher>, <rdfs:subClassOf>, < univ:People> 
< univ:Course>, < rdf:type>, <owl:class> 
<univ:teach>,<rdf:type>,<owl:InverseFunctionalProperty> 
< univ:teach>, <rdfs: domain>, < univ:Teacher”> 
< univ:teach>, <rdfs:range>,< univ:Course”> 
< univ:teach>,<owl:inverseOf>,< univ:isTaughtBy”> 
<univ:isTaughtBy>,<rdf:type>,<owl:InverseFunctionalProperty> 
< univ:isTaughtBy>, <rdfs: domain>, < univ:Course> 
< univ:isTaughtBy>, <rdfs:range>, < univ:Teacher> 
< univ:isTaughtBy>, <owl:inverseOf>, < univ:teach> 
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The T-Box definition is indexed in the triple format as 
well. Classes and properties of the T-Box are indexed 
separately. The indexing process is the same as A-Box 
indexing – storing each triple three times by the subject, 
predicate, and object respectively. The three parts of the T-
Box triple are uneven: a T-Box has only a limited number of 
predefined predicates, but many more objects and subjects. 
For example, many classes have a subclass property; each is 
encoded as a triple with predicate rdf:subClass. When 
indexing by the predicate, all these triples are mapped to the 
same key and therefore to the same peer in the network. This 
causes overloading of the peer in charge of the key. This 
problem can be solved by simply not indexing the overly 
popular keys; the query can be resolved by using other 
information of the triple. 

Storing the T-Box definition is only part of the indexing 
task. In a VO, many nodes may use the existing T-Box 
instead of defining their own. Therefore, another task of T-
Box indexing is to link the T-Box triples with nodes using 
them. This is done by extracting the T-Box concepts from a 
node’s ontology, and then using them as the key and the 
node’s Id as the value to do indexing. Table 1 shows an 
example T-Box index table maintained by a peer. 

TABLE I.  AN EXAMPLE T-BOX INDEX TABLE STORED IN A NODE 

Concept Peers 
Involved 

Related T-Box triple 

OS n2,n14, 
n31,n… 

<OS><superClasss><UNIX> 
<OS><equivalentClass><OperatingSyste

m> 
PC n7, … <PC><referentialClass><Computer> 

Unix n5, n2 <OS><superClasss><UNIX> 
CPU n14, n5 <Processor>< equivalentClass ><CPU> 

 
own n11, n53 <ownedBy><inverseProperty><own> 

 
run 

n2, n14, 
n5 n12, 
n23, … 

<run><equivalentProperty><execute> 
<run><domain><Computer> 

<run><range><OS> 

T-Box indexing only stores the schema information but 
ignores the individual instances. It has two functionalities: it 
helps answering knowledge schema queries; it also helps 
filtering the candidate result set for individual instance 
queries. Compared to the instance-level A-Box indexing, T-
Box indexing does not require creating and maintaining 
oversized indices since there are far fewer concepts than 
instances. The down side of keeping only the schema 
information is that query answering without the index 
support at the instance level is much more computationally 
intensive. Obviously, there is a tradeoff between query 
overhead and indexing overhead. When the system has a 
high requirement for fast and efficient query answering, it 
has to pay more for the indexing. On the other hand, if the 
system does not index the detailed knowledge, it has to 
explore more nodes in searching for query results. An 
application should determine the right indexing granularity 
that can trade off the cost of maintaining the index against 
the benefit that the index offers for queries. 

III. QUERY EVALUATION 
Having introduced the metadata indexing scheme, we 

now turn our attention to how to utilize the index. 
Particularly this section describes how to combine lookup 
operations from different indexes to process queries. Our 
system supports SPARQL query language. The query 
evaluation process begins with the parsing of a user’s query 
to SPARQL format.  Then the query in terms of relations in 
the user’s local ontology will be translated into sub-queries 
using the semantic mapping axioms indexed into the overlay. 
Then each of the sub-queries can be executed at different 
sources in parallel and the query engine can collect returned 
answers from the sources and combine them as the answer to 
the query.  This process is illustrated in Fig. 1, in which we 
assume the underlining indexing is based on A-Box. 

Searching based on T-Box indexing is similar and is studied 
in Section 3.2.  

Figure 1.  Query processing 

A. Processing SPARQL queries 
The building block for SPARQL queries is graph patterns 

which contain triple patterns. Triple patterns are RDF triples, 
but with the option of query variables in place of RDF terms 
in the subject, predicate, or object. A solution to a SPARQL 
graph pattern with respect to a source RDF graph G is a 
mapping from the variables in the query to RDF terms such 
that the substitution of variables in the graph pattern yields a 
sub-graph of G [32]. More complex SPARQL queries are 
constructed by using projection (SELECT operator), left join 
(OPTIONAL operator), union (UNION operator), and 
constraints (FILTER operator) [12]. The semantics for these 
operations are defined as algebraic operations over the 
solutions of graph patterns [13]. 

1) Single triple pattern. The simplest query is to ask for 
resources matching one triple pattern. To illustrate how to 
perform this kind of simple SPARQL queries, imagine a 
query to discover the person who teaches course cs213. In 
SPARQL this query could be written as:  
PREFIX sample:<http://www.cs.ubc.ca/~juanli/#sample > 
SELECT ?person 
WHERE  { 
    ?person sample:teach sample:cs213  
} 

In this query pattern, there is only one triple pattern and 
at least one part of the triple is a constant. Since we store 
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each triple three times based on its hashed subject, predicate, 
and object values, we can resolve the query by routing it to 
the node responsible for storing that constant. Then the 
responsible node matches this triple against the patterns 
stored locally and returns results to the requesting node. In 
this example, there are two constants in the triple pattern; the 
query processor can use either of them as the DHT lookup 
key. For example, we can hash on the object: sample:cs213, 
then use it as the key to route the query. The node in charge 
of this key in the DHT overlay matches triples indexed 
locally using this pattern, and sends back the matched triples. 
 

2) Conjunctive patterns. When the graph pattern is more 
complex containing multiple triples, or the query contains a 
group graph pattern, then each triple pattern will be 
evaluated by one or two different nodes. These nodes form a 
processing chain for the query. The first triple pattern is 
evaluated at the first node, the result is then sent to the next 
node for further processing. This process continues until the 
last triple pattern is processed. An alternative approach is to 
process patterns in parallel, and all results are sent to one 
node to do the final processing. A system should choose the 
appropriate approach according to its application. In our 
example, we use the sequential approach since sequentially 
joining intermediate results saves the traffic for transferring 
large amounts of unrelated data. The sequence to evaluate 
the triple patterns is crucial. Many database researchers have 
worked on it [14, 15]. Here, for simplicity, we assume that 
we evaluate the query with the original triple pattern order, 
in which adjacent triple patterns share at least one common 
variable. 

For a query q that has k conjunctive triple patterns (t1, t2, 
…tk), the query evaluation proceeds as follows: First, t1 is 
evaluated using the single triple pattern processing method 
mentioned previously. The result is projected on the 
variables with values that are needed in the next query 
evaluation. Then the query together with the next triple 
sequence number and the intermediate result is sent to the 
node responsible for the next triple pattern. When a node ni 
receives the query request, ni evaluates the i-th triple pattern 
ti of the query using its local triple index and the intermediate 
result from previous nodes. Then ni computes the 
intermediate result and projects the result on columns that 
are needed in the rest of the query evaluation (i.e., variables 
appearing in the triple pattern ti+1 of q). This is a nested loop 
join on the common column for the inner relation. The 
process recursively repeats until the last triple pattern tk of q 
is evaluated. Then, the last node nk simply returns the result 
back to the querying node. We use an example to explain 
this process. The query to find authors who write papers in 
the field of P2P is listed below: 
SELECT ?author 
WHERE  { 
     ?author :create ?paper . 
  ?paper :category ?cat . 
 ?cat :label P2P 
} 

The query evaluation process is illustrated in Fig. 2. Each 
event in this figure represents an event in the network, i.e., 
the arrival of a new query request. The query request consists 
of three parts: (1) the original query, (2) the triple pattern to 
be processed in this node, represented with that triple’s 
sequence number in the original query’s triple lists, (3) the 
intermediate result from previous nodes. Initially, the 
intermediate result is empty (Ø). 

  

Figure 2.  Processing a query with a conjunctive pattern (Results are 
represented as relational algebras. Π:Projection, б:Selection, ∞:join) 

3) Value constraints. A constraint, expressed by the 
keyword FILTER, is a restriction on solutions over the 
graph pattern group in which the filter appears. In the 
simplest case, the value constraint refers only to variables 
that are bound in the current group and the constraint can be 
mapped into an equivalent relational expression. In this case 
the constraint may be applied simply by selecting on the 
appropriate column. For example, if we have (?x :age ?y . 
FILTER(?y > 30) ) we need only to select ?y with value 
greater than 30. 

Sometimes constraints are placed in optional patterns 
(explained in next section) with variables that do not appear 
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in that block. In this case, since the bindings for that variable 
are not available at the time the intermediate result is 
selected, the constraint can be transferred to the results 
processing step. Alternatively, if available, the bindings for 
the variables in question can be joined to the intermediate 
results in which they appear. 

4) Optional patterns. SPARQL’s OPTIONAL operator 
is used to signify a subset of the query that should not cause 
the result to fail if it cannot be satisfied. It is roughly 
analogous to the left outer join of relational algebra. When 
processing queries with optional patterns, the intermediate 
results are produced for each pattern as before, but in the 
case of an optional pattern, columns that allow joining onto 
the required pattern must also be projected.  

A query with an optional pattern is shown below. A node 
processes the first pattern, the required pattern, and gets the 
intermediate result Rtmp.(Equation 1). The query together 
with the intermediate result is sent to another node 
responsible for the optional pattern, where the optional 
pattern will be matched with the local triples and the result 
Ropt is outer joined with Rtmp. 
SELECT ?name ?homepage 
WHERE { ?person :name ?name . 

OPTIONAL { ?person :homepage ?homepage .} 
} 

  )T(R 1namepresubtmp == σπ   (1) 
  )( 2homepage, TR preobjsubopt == σπ   (2) 
  )(2,1 opt

left
tmpcolcol RRR ∞= π   (3) 

5) Disjunctive patterns. SPARQL provides a means of 
combining graph patterns so that one of several alternative 
graph patterns may match. If more than one of the 
alternatives matches, all the possible pattern solutions are 
found. Pattern alternatives are syntactically specified with 
the UNION keyword. Obviously, this kind of disjunctive 
query could simply be resolved by evaluating each sub-
query and then computing the union of the results.  For 
example, for the query listed below, the two sub-queries are 
sent to different responsible nodes, which then calculate and 
return the intermediate results to the querying node, where 
the final result is merged. 
SELECT ?name ?mbox 
WHERE { 
   ?person :name ?name . 
   { ?person :mbox ?mbox } UNION  

{ ?person :mbox_sha1sum ?mbox } 
    } 

B. Query optimization and relaxation  
Query optimization should be performed in the query 

evaluation process to improve the performance. For example, 
according to the existing research [16], we can rely on 
algebraic equivalences (e.g., distribution of joins and unions) 
to order the evaluation sequence. We may want to separate 
the unions early to parallelize the execution of the union in 

several peers. Additionally, selects and projects should be 
pushed down to the lowest possible places, while joins 
should be evaluated closer to the intermediate peers to 
reduce the size of the result set as early as possible. 
Furthermore, statistics about the communication cost 
between peers and the size of expected intermediary query 
results can be used to decide which peer and in what order 
will undertake the execution of each query operator. There 
has been extensive work in query optimization [17, 14]; we 
can utilize their results in our system. 

The matching manager has the task of finding candidate 
instances that match the specific query constraints, in 
particular to take into account the concepts, attributes and 
relationships. It is possible that the descriptions of different 
ontologies referring to the same real-world object can be 
significantly different. As a consequence, real-world objects 
that are meant to be an answer to a query are not returned 
because their description does not match the query due to 
insufficient mappings. If a query cannot get enough results 
because of this high heterogeneity, the matching manager 
can relax the query constraints by partially matching the 
query.  

C. Query processing based on T-Box indexing 
In our previous description of query evaluation, we 

assume the overlay maintains A-Box indexing. In that 
scenario, instance triple patterns are indexed in the overlay, 
and queries for instances can be accurately forwarded to the 
right peers in charge of the triples. If an application only 
maintains T-Box indices, the evaluation process is different. 

For schema (T-Box) queries on T-Box indexing, the 
evaluation process is similar to the query evaluation process 
we just explained, because T-Box indexing is detailed 
enough to answer the schema query. For example, consider 
the query pattern:  

SELECT ?class 
WHERE { 

?class rdfs:subClassOf ?someClass 
:teach rdfs:domain ?someClass} 

It asks for the subclasses of a class which forms the 
domain of a property teach. The processing of this query is 
the same as the evaluation of conjunctive queries. The query 
will first be hashed on property teach to find its domain 
class, which will then be used to resolve the next sub-query. 

T-Box indexing cannot be used directly to evaluate 
queries at the instance level, but it can restrict the query to a 
small set of nodes which are ontologically related to the 
query. These nodes have the T-Box knowledge to understand 
the query, thus are capable of answering the query. When a 
node issues an instance-level query, the T-Box concepts 
related to the query are extracted in the form of a keyword 
list, and these keywords are used as parameters to retrieve 
the relevant peers. We use an example to explain this 
process. The query is shown below:  

SELECT ?author 
WHERE  { 
    ?author rdf:type :Person . 
    ?author :name "Juan Li" .} 
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First, the query processor uses the concepts Person and 
name as keys to locate all nodes related to these concepts. 
Then the query is sent to these nodes for further evaluation. 
This way, the search scope is limited to a number of nodes 
whose schemas are related to the query, although not all of 
them can answer the query. 

IV. EXPERIMENT  
Owing to the lack of access to the semantic environment 

with many nodes, our system performance evaluation falls 
back to simulations. 

A. Experimental setup 
As it is difficult to find representative real world 

ontology data, we have chosen to generate test data 
artificially. Our data does not claim to model real data, but 
shall rather provide reasonable approximation to evaluate the 
performance of the system. Ontology data can be 
characterized by many factors such as the number of classes, 
properties, and individuals; thus we have generated the test 
data in multiple steps. The algorithm starts with generating 
the ontology schema (T-Box). Each schema includes the 
definition of a number of classes and properties. The classes 
and properties may form a multilevel hierarchy. Then the 
classes are instantiated by creating a number of individuals 
of the classes. To generate an RDF instance triple t, we first 
randomly choose an instance of a class C among the classes 
to be the subject: sub(t). A property p of C is chosen as the 
predicate pre(t), and a value from the range of p to be the 
object: obj(t). If the range of the selected property p are 
instances of a class C’, then obj(t) is a resource; otherwise, it 
is a literal. 

The queries are generated by randomly replacing parts of 
the created triples with variables. For our experiments, we 
use single-triple-queries and conjunctive-triple-queries. To 
create the conjunctive-queries, we randomly choose a 
property p1 of class C1. Property p1 leads us to a class C2 
which is the range of p1. Then we randomly choose a 
property p2 of class C2. This procedure is repeated until the 
range or the property is a literal value or we have created n 
(n≤3) triple patterns. 

Our dataset uses the following parameters: The total 
number of distinguished ontologies is 100. We assume each 
node uses 1 to 3 ontologies. Each ontology includes at most 
10 classes. The number of properties that each class has is at 
most k=3. The number of instances of each class at each peer 
is less than 10. Finally, the number of triple patterns in each 
query we create is either 1 or 3. 

We implement a simulator of Pastry in Java on top of 
which we developed our indexing and routing algorithms. 
Each peer is assigned a 160-bit identifier, representing 80 
digits (each digit uses 2 bits) with base b=2. After the 
network topology has been established, nodes publish their 
data on the overlay network. Then nodes are randomly 
picked to issue queries. Each experiment is run ten times 
with different random seeds, and the results are the average 
of these ten sets of results. 

B. Experimental results 
We are mainly interested in two different questions, 

related to three different aspects of the indexing and 
searching scheme. First, we want to verify the efficiency of 
answering typical lookup requests. Second, we need to 
compare the overhead of indexing T-box and A-box as well 
as the overhead of searching based on these two indexing 
schemes. 

 
Figure 3.  Query lookup efficiency (network size vs. query hops) 

The first experiment answers the first question showing 
the number of routing hops as a function of the size of the 
Pastry network. We vary the number of Pastry nodes in the 
network from 29 to 214. We run two trials of experiments: 
one trial issues only single-triple-queries, while the other 
trial issues conjunctive-triple-queries.  Fig. 3 shows the 
average number of routing hops taken as a function of the 
network size for both query patterns. log2bN is the expected 
maximum number of hops required to route a key in a 
network containing N nodes (In our experiment b=2), 
therefore, in the figure “log4N” is included for comparison. 
The results show that the number of route hops scales with 
the size of the network as predicted: for the single triple 
query, the route length is below log4N; for conjunctive 
queries, the number of routing hops is below 3log4N as 
expected. 

The next experiment compares the performance of the T-
Box and the A-Box indexing in terms of indexing overhead 
and query overhead. Each node may randomly choose n (n<3) 
ontologies from 100 distinguished ontologies, and instantiate 
each class with m (m<10) instances. For simplicity, each 
query uses the simple single triple pattern. With this 
configuration, we see from Fig. 4 that A-Box indexing incurs 
much more overhead than T-Box indexing, and the 
discrepancy increases as the network size increases, for 
example, A-Box indexing causes several orders of 
magnitude higher overhead than what TBox indexing creates 
when the network size is 4096. On the other hand, if the 
system can afford the cost of maintaining the large index, A-
Box indexing can improve searching efficiency. Fig. 5 shows 
the query overhead in terms of cumulative query messages. 
It is obvious that with A-Box indexing, processing a query 
requires much less message forwarding overhead than that 
based only on T-Box indexing. 
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Figure 4.  Indexing storage load of T-Box indexing and A-Box 

indexing(network size vs. cumulative index (bytes)) 

 

 
Figure 5.  Indexing storage load of T-Box indexing and A-Box indexing 

(network size vs. cumulative query messages) 

We have seen the differences between T-Box indexing 
and A-Box indexing. For an application, there are many 
factors to consider for choosing the right indexing scheme, 
for example, the storage capacity of the participating nodes, 
the nature of the major queries, and the organizations’ 
policy, and the degree of heterogeneity of the system’s 
ontology. 

V. RELATED WORK 
Most current research on searching or querying Semantic 

Web uses an Information Retrieval (IR)-based search engine 
(e.g. [18–22]). The IR-based work, such as Swoogle [19] and 
SWSE[20], indexes the Semantic Web by crawling and 
indexes the Semantic Web RDF documents found online and 
then offers a search interface over these documents. 
However, the IR-based semantic data search does not 
provide structured query capability. 

Several groups [10, 23, 24, 25, 26, 27] have developed 
technology to store RDF nodes, arcs and labels into 
relational database systems, such as MySQL, Oracle, and 
DB2, so that Semantic Web data can be efficiently indexed 
and retrieved. They translate a SPARQL query into SQL 
statements which are evaluated on the triple store in 
relational databases. Our SPARQL query evaluation is based 
on their research result and converts the RDF graph pattern 
to relational algebra. These DB-based design strikes a careful 
balance between flexibility, scalability, query facilities, 
efficiency and optimization. However, taking centralized 
database servers to support complex queries on web-scale 
data is still a big challenge. Any server-centered architecture 
will not only create physical bottlenecks, but as 
communication relies on the use of ontologies will also 
create semantic bottlenecks [28]. 

To address the scalability issue, researchers have utilized 
P2P technologies to Semantic Web. For example, systems 
such as Edutella [29] and InfoQuilt [30] use broadcast or 
flooding to search RDF data, while many other projects, like 
RDFPeer [11] and OntoGrid [31] attempt applying DHT 
techniques to the retrieval of the ontology encoded 

knowledge. Our indexing scheme is based on DHT as well, 
but it has two unique advantages: (1) it distinguishes 
semantic data in different levels of abstractions, thus is more 
scalable and flexible; (2) it provides support for W3C 
recommended query language SPARQL, thus is easier to be 
propagated and used. 

VI. CONCLUSION 
With the growth of the Semantic Web data, there is a 

strong need to make the semantic information accessible to 
computer programs that search, filter, and convert 
information for the benefit of the users. In this paper, we 
introduced methods for distributed indexing and querying 
Semantic Web data over P2P network. A key advantage of 
this ontological indexing scheme is its ability to index in 
different granularities and support complex SPARQL query 
evaluation. Queries are processed in a distributed and 
transparent fashion, so that the fact that the information is 
distributed across different sources can be hidden from the 
users. A set of experiments have been made to show the 
effectiveness and efficiency of the proposed schemes. 
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