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Abstract 

 
Locating desirable resources is very important for a 

large distributed system. However, the distributed, 
heterogeneous, and unstructured nature of the system 
makes this issue very challenging. The discovering 
mechanism has to be not only semantically rich, in 
order to cope with complex queries, but also scalable 
to handle large numbers of information sources. In this 
paper, we address these problems by proposing 
OntSum, an efficient peer-to-peer query routing 
scheme based on concise ontology indexing.  Unlike 
most existing systems, our system does not assume a 
global ontology but heterogeneous ontologies. Peers in 
the system use their own ontologies to describe their 
resource knowledge and the network topology is 
adjusted according to peers’ ontological properties.  A 
novel indexing strategy enables forwarding queries 
only to semantically related nodes. The architecture 
improves interoperability among network participants 
and aids efficient resource discovery through an 
expressive query language.  
 
1. Introduction 
 

With the rapid growth of online data, discovering 
the desirable information from the vast amount of 
sources has become a central issue to be addressed. 
Peer-to-peer (P2P) technology has been used as a 
solution to this problem, since it scales to very large 
networks, while ensuring high autonomy and fault-
tolerance. However, existing P2P systems offer few 
data management facilities, limited to IR(Information 
Retrieval) -style keyword search. Keyword search is 
appropriate for simple file-sharing applications, but it 
is unable to deal with discovery of complex resources 
which have various properties and sophisticated 
relations with each other.  

Recent schema-based P2P systems [1, 2, 3] go 
beyond file-sharing, by providing infrastructures where 
peers can create and share knowledge. Most existing 

schema-based P2P systems are built on top of 
unstructured networks, and often use flooding or 
maintain a broadcast structure such as a tree or a super 
cube for searching. For example, to execute an RDF 
query, Edutella [3] broadcasts the query to the whole 
hypercube.  More recently, a few studies [4, 5, 6] 
extended the DHT to support complex queries. The 
basic idea is to map each keyword in a complex query 
to a key. A query with multiple keywords then uses the 
DHT to lookup each keyword and returns the 
intersection. In order to do this intersection, however, 
large amounts of data have to be transferred from one 
peer to another, thus creating large traffic load [7]. 
Systems like [8] avoid this multiple lookup and 
intersection by storing a complete keyword list of an 
object on each node. This approach may incur a huge 
overhead on publishing and storing the keywords. 
Another problem of DHT approaches is that most of 
them assume a uniform ontology . 

In this paper, we address the routing issues of 
expressive queries in a large distributed environment 
by an ontology-based P2P approach. Peers in our 
system advertise local resources using ontological 
descriptions. We do not assume peers use a global 
ontological schema; instead, ontologies are allowed to 
differ between users. The network topology is 
reconfigured with respect to peers’ ontological 
similarity, so that peers with similar ontologies are 
close to each other. An effective and efficient lookup 
service is built on top of a concise ontology indexing, 
such that queries can be forwarded only to those peers 
containing resources that satisfy the query constraints. 
Results from simulation experiments demonstrate that 
this routing scheme is scalable and efficient. 
 
2. Peer ontology 

 
Before they can discover resources efficiently, peers 

have to construct their ontological knowledge of the 
resources. With this knowledge, peers can describe 
their resources expressively, pose rich queries, and 
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route queries intelligently. In this section, we specify 
how nodes construct their ontology knowledge in 
detail. 
 
2.1. Local ontology repository 
 

Peers describe their resource knowledge with 
ontologies. The knowledge sharing and discovering are 
based on the ontological descriptions. As in common 
DL (Description Logic) systems [26], our system 
divides the ontology knowledge into two parts: the 
taxonomical box (T-Box) and the assertion box (A-
Box).  The T-Box stores conceptual knowledge and 
can be compared to the schema of a database system.  
It is created by defining concepts and relationships 
between concepts. The A-Box represents the concrete 
knowledge about individuals. A node also uses 
inference engines to derive additional facts from 
existing knowledge. Our inter-cluster routing and intra-
cluster routing, both will be explained later, are based 
on the T-Box and A-Box indexing respectively. 
 
2.2. Peer semantic similarity 
 

To organize peers according to their semantic 
properties, we need a metric to measure peers’ 
ontology similarity. There have been extensive 
researches ([28], [29], [30]) focusing on measuring the 
semantic similarity between two objects in the field of 
information retrieval and information integration. In 
this paper, we will use a very simple method to 
compute the semantic similarity function between two 
peers; this can easily be replaced with other advanced 
functions for a complex system.  

In the current system, a node’s T-Box concepts are 
indexed into a vector which is called this node’s 
ontological signature vector. This vector is extended 
by adding new concepts which are semantically related 
to the original concepts. For example, we can exploit a 
pre-defined thesaurus like WordNet [31] or knowledge 
learned from the network. Assume A and B are two 
peers, and their signature vectors are V(A) and V(B) 
respectively. The semantic similarity between peer A 
and peer B is defined as: 

|)(|
|)()(|),(

AV
BVAVBAsim ∩=        (1) 

In (1), ∩ denotes set intersection, while | | represents 
set cardinality. This definition is based on the idea that 
ontologies which share more common concepts are 
more similar than those sharing less common concepts. 
Note that with this definition, similarity is not a 
symmetric relation (i.e.: sim(A,B) ≠ sim(B,A)). Peers 
become semantically related to a peer if their similarity 

is beyond a specified similarity threshold: t (0<t<1), 
which can be determined locally by the peer. 
 
2.3. Ontology mapping 
 

As mentioned, it is infeasible to expect a standard 
uniform ontology inside a large network; instead, 
different peers are allowed to use different ontologies. 
When a query is forwarded to a peer, even if the peer is 
semantically related to the query, it may not know all 
terms used in the query expression, because they are 
taken from the local ontology of the asking peer. In 
order to overcome this problem, we have to align the 
ontologies of the asking and the answering peer. We 
have described an appropriate mapping scheme in [9]; 
here we briefly present the basic idea: The defined 
mappings between different ontologies either refer to 
the same concept, relation (equivalent class/property), 
or one is a special or general case of the other 
(sub/super class/property). We also note that various 
ontologies may contain different supplementary 
information about the same real world individual; thus 
we add a special referentialClass relation between 
concepts. This allows individuals to be merged if 
specific properties match, creating an aggregated 
entity. 
 
2.4. Ontological query 
 

The system adopts RDQL [10] as the query 
language. RDQL is a query language in Jena [11] 
models, which is based on matching {subject, 
predicate, object} triples. A query is generally 
constructed by using the user’s local ontology; yet, in 
order to retrieve relevant data from other ontologies, it 
is extended and reformulated with the inter-ontology 
mappings. 
 
3. System architecture 
 

In this section, we explain how to construct an 
ontology-aware network topology and how to route 
queries intelligently in a large distributed system. In 
addition, the problem of semantic heterogeneity is 
taken into account as well. 
 
3.1. Overview 
 
3.1.1. Semantic domains and clusters. Figure 1 
shows a high level picture of the network topology. 
Nodes form multi-layered clusters reflecting the 
semantic locality: nodes with similar ontological topics 
form a big domain; inside the domain, nodes may 
create smaller clusters if they share the same ontology. 
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For example, in Figure 1, all peers in the medical 
domain are interested in medically related information. 
They may be interested in different aspects of the 
medical resources, and they may use different 
ontologies to describe their resources, but since they 
share the similar interests (medicine here), they 
connect with each other through some links. Inside the 
medical domain, nodes further organize themselves to 
finer-grained clusters based on their ontologies. For 
example, N1, N2, N5, and N8 use the same ontology: 
ont1 (e.g., a medical ontology: SNOMED-RT [27]), so 
they form a same-ontology cluster. In the rest of this 
paper, we use the term “domain” to represent a group 
of clusters sharing similar ontological topics, and use 
the term “cluster” to denote the same-ontology cluster. 
Clusters and domains do not have fixed boundaries; 
they are formed by randomly connecting relevant 
nodes.  
 

 
Figure 1. The network topology  

 
To form this multi-level structured network a node 

distinguishes three kinds of neighbors based on their 
semantic similarity. A peer A’s neighbor B, can be one 
of these three types: (1) zero-distance neighbor (or 
same-ontology neighbor, intra-cluster neighbor), if 
sim(A,B)=1. (2) short-distance neighbor (or 
semantically related neighbor) if sim(A,B)≥t (0<t<1 is 
A’s semantic threshold. ). (3) Long-distance neighbor 
(or semantically unrelated neighbor) if sim(A,B)<t. A 
node always tries to find as many close neighbors as 
possible, but it also keeps some long distance 
neighbors to reach out to other ontological clusters.  
 
3.1.2. Query and routing. Peers in our system may 
pose two kinds of queries: neighbor-discovery query 
and resource-discovery query. The neighbor-discovery 
query is used to construct the ontology-based network 
topology. When a new node joins the network, it issues 
neighbor-discovery query to find semantically related 
neighbors, so that it can join their domain and cluster 
by connecting to them. The resource-discovery query 
is to locate desirable resources in the network.  

To efficiently route queries, we propose two routing 
schemes: inter-cluster routing and intra-cluster routing. 
The former quickly locates semantically related 

clusters; while the latter efficiently finds desirable 
resources satisfying the query constraints. Related with 
the two routing schemes, two routing tables are 
maintained at each node: inter-cluster routing table and 
intra-cluster routing table (inter-table and intra-table 
for short). A node’s routing tables maintain finer-
grained knowledge of neighbors semantically closer to 
it, but coarser-grained knowledge of neighbors further 
from it. This reflects the characteristic of our routing 
strategy: the query first walks around the network, 
once it reaches the target domain, it zooms in on that 
domain and investigates the domain’s ontology 
properties. 
 
3.2. Routing tables 
 
3.2.1. Inter-cluster routing table. A node’s inter-table 
stores the abstract semantic knowledge of its 
neighboring clusters. Specifically, it keeps the contacts 
to those clusters: its short-distance and long-distance 
neighbors, their semantic similarities to this node, their 
semantic signature vectors mapped in a compressed 
Bloom Filter [15]. To reconcile the semantic 
differences between the node and its short-distance 
neighbors, inter-ontology mappings are also stored in 
the inter-table. A query then can be forwarded to a 
neighbor after being translated according to the inter-
ontology mapping. A neighbor-discovery query is 
mainly routed through the long distance links to 
quickly locate related clusters. A resource-discovery 
query is forwarded only through the short-distance 
links because of the topology’s semantic locality 
property. 

Table 1 shows the inter-table of N2, a node in 
Figure 1. N3, N4, and N6 are short-distance neighbors 
of N2 (assume the similarity threshold is 0.6). N7 is a 
long-distance neighbor which links N2 to a 
semantically unrelated domain. Neighbors’ semantic 
signature vectors are compressed into a Bloom filter, 
thus they are sequences of 0s and 1s. The last column 
of the table stores the inter-ontology mappings between 
N2 and other semantically related neighbors. For 
example, the last column of the first row stores 
ontology mappings between N2 and N3, which 
includes equivalent class mapping Ca=Ca’ and 
equivalent property mapping P1=P1’. The 
representation of the mapping is defined in our 
previous paper [9]. Several semi-automatic tools such 
as Protégé-PROMPT [12] and Chimaera [13] exist for 
eased ontology mapping.  

To control the overhead of routing table 
maintenance, a soft-state update mechanism is used to 
keep the routing information up-to-date: nodes 
periodically probe their neighbors and propagate 
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updated ontology information to them. At any given 
time, the resource routing information may potentially 
be stale or inconsistent, but in a long run, they are good 
enough to direct the query forwarding to the right 
peers. 

 
Table 1. Inter-cluster routing table of node N2. 

neighbor semantic 
similarity 

compressed 
signature vector  

Inter-ontology 
mappings  

N3  0.8 ont2 [1001010…] Ca=Ca’,P1=P1’… 
N4 0.7 ont3 [0111010…] Cm⊃Cm’,P2⊃P2’ 
N6 0.6 ont4 [1100010…] Ct⊂Ct’ … 
N7 0 ont5 [0001010…] none 

 
3.2.2. Intra-cluster routing table. After the target 
cluster has been located through the inter-cluster 
routing, intra-cluster routing table is used to forward 
queries inside the cluster. Since clusters are relatively 
small, it is possible to index more detailed ontology 
information into the intra-table. Unlike inter-table 
which stores the abstract T-box knowledge, the intra-
table records detailed A-Box knowledge from 
neighbors inside the same cluster, i.e., zero-distance 
neighbors. Table 2 is the intra-cluster routing table of 
node N2. It includes a concise summary of individual 
resources which can be reached through N2’s zero-
distance neighbors: N1, N5 and N8. The resource 
information is summarized into a concise structure 
called triple filter, which will be explained in detail in 
Section 3.5. 

 
Table 2. Intra-cluster routing table of node N2. 

neighbor A-Box summary in the format of triple filters 
N1 sub:[01030212..], pre:[2100010..], obj:[31312021..] 
N5 sub:[00120212..], pre:[1103013..], obj:[02212010..] 
N8 sub:[01002110..], pre:[0100012..], obj:[01132010..] 

 
3.3. Neighbor-discovery query routing  
 

The construction of ontology-based topology is a 
process of finding semantically related neighbors. A 
node joins the network by connecting to one or more 
bootstrapping neighbors. Then the joining node issues 
a neighbor-discovery query, and forwards the query to 
the network through its bootstrapping neighbors. The 
neighbor-discovery query is routed mainly according 
to the inter-cluster routing table.   

 A neighbor-discovery query message includes 
several parts: (1) The querying node’s ontology 
signature vector. To reduce its size, and to accelerate 
ontology matching, the signature vector is compressed 
into a Bloom filter bit map. (2) A similarity threshold 
which is a criteria to determine if a node is 
semantically related to the query. (3) A query TTL to 
decide how far the query should be propagated. (4) A 
list of clusters (represented by the ontology namespace 

of the cluster) the query has passed through, so that the 
query would not be forwarded to the same cluster again 
and again.  

When a node N receives a neighbor-discovery query 
Q which tries to find neighbors for a new joining node 
X, N computes the semantic similarity between X and 
itself; if N is semantically related to X, N will send a 
Neighbor Found reply. If the query’s TTL does not 
expire, N computes the semantic similarity between X 
and each of its neighbors, and forwards the query to 
semantically related neighbors. If no semantically 
related neighbors are found, the query will be 
forwarded to N’s long-distance neighbors. The detailed 
query processing algorithm is illustrated in Figure 2. 

 

 
  

 
 
 
 
 
 
 
 
 
Figure 2. Pseudo code of neighbor-discovery query  
 
3.4. Resource-discovery query routing 
 

With the semantics-based network topology and the 
inter-cluster and intra-cluster routing tables, queries 
can be efficiently forwarded to only a small set of 
related peers.  When a peer initiates a query, it first 
chooses a subset of zero-distance neighbors to forward 
the query. Since they use the same ontology, the zero-
distance neighbors are best candidates to forward the 
query to. The selection of neighbors is based on the 
intra-cluster routing algorithm, which we will describe 
in Section 3.5. The query is also translated according to 
the inter-ontology mappings, and forwarded to related 
clusters through the short-distance neighbors whose 
semantic signature vectors match the translated query. 
Then the query is propagated in those clusters. When a 
node receives a query, it uses similar strategy to 

/* When a node N receives a neighbor-discovery query Q 
issued by a new joining node X, N calls this function to process 
the query*/ 

 
process_neighbor_discovery_query (query Q)  
{ 
1.   if Q has been received before, discard it, return 
2.   compute the semantic similarity between X and N: sim(X,N)  
3.   if (sim (X,N) =1) 
4.        send a reply indicating N is X’s zero-distance neighbor;  

 the reply also contains N’s zero-distance neighbors  
5.   if (threshold ≤sim(X,N) < 1) 
6.         send a reply indicating N is X’s short-distance neighbor 
7.   if (TTL does not expire) 
8.          for each neighbor Nj in N’s inter-cluster table 
9.   compute the semantic similarity sim(X, Nj)   
10.   if (sim(X, Nj)  ≥ threashold) 
11.                    forward Q to Nj 
12.        if no Nj found 
13. forward Q to N’s long distance neighbors 
} 
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forward the query to their neighbors until the query 
TTL expires.  
 
3.5. Intra-cluster routing 
 

The objective of intra-cluster routing is to find the 
right individual resources which satisfy the query 
constraints. The intra-cluster routing is guided by 
peer’s compact A-box summaries. When processing a 
query, the summaries are used in a pre-processing step 
to filter the members that are likely to provide a 
relevant answer to the query. Here we will give a brief 
introduction of the routing scheme; the detailed routing 
algorithm was explained in our previous paper [14].  
 
3.5.1. Idea of triple filter. The individual-level (or 
instance-level) indexing can be very expensive due to 
the large number of instances. Our solution is to extract 
the building block of the RDF A-Box statement: 
subject, predicate and object, and summarize them in a 
compact structure: a triple filter, which is based on 
Bloom filters.  A triple filter includes three Bloom 
filters: the subject filter, the predicate filter, and the 
object filter. An RDF triple can be hashed to these 
three filters. With this technique, the network traffic 
can be significantly reduced since instead of 
transferring all data through the network, only an 
aggregated bit map needs to be transferred. 
 
3.5.2. RDV intra-cluster routing.  The query routing 
inside a cluster is based on our resource-distance-
vector (RDV) routing algorithm [14]. It uses a distance 
vector approach to route the query to the nearest 
matching nodes. Every peer maintains a resource index 
table. This table uses the triple filters we mentioned 
above, and includes distance information (in number of 
hops). Peers exchange the resource indices with their 
neighbors, and update relevant entries in their table. 
The distance information is updated whenever passing 
through a node. To reduce false positives brought by 
the result of resource information aggregation, we set a 
hop count limit, which we call radius, to limit the 
number of hops the resource information can travel. 
When a node receives a query request, the algorithm 
chooses the shortest routes to forward the query. In 
addition, a “heuristic jump” method is used to expedite 
the searching process by skipping over the “barren” 
areas. 

Figure 3 illustrates a query routing example. In this 
example, the radius is set to 3, so nodes are only aware 
of resources within 3 hops. Node A receives a query for 
resource e, which is mapped to two positions: 3 and 6 
in the filter. It checks its routing table and finds two 
matches: through C with 2 hops (C3=2, C6=2) and 
through D with 3 hops (D3=3, D6=3). So the shortest 

distance to the resource is 2 through neighbor C. 
Therefore, the query is forwarded to C. Similarly, C 
forwards the query to E. E finds a match in its local 
vector, and then it checks the RDF database with the 
original RDQL query. Readers can refer to our paper 
[14] for detailed explanation of the construction, 
maintenance, and usage of the routing table. 

 

 
Figure 3. RDV query routing example 

 
4. Experiments 
 
4.1. Methodology 
 

Extensive simulations have been preformed to 
evaluate the performance of our searching scheme. For 
comparisons, we simulated our searching scheme 
OntSum in conjunction with the learning-based short-
cut scheme [23] and a randomly connected Gnutella 
scheme [33]. The short-cut approach was chosen as 
one comparison reference since it is simple yet 
effective, and many popular applications (e.g., [23], 
[32], [24], [25]) use this approach as their routing 
scheme. Moreover, it is comparable to our approach in 
a sense that it creates clusters on top of the 
unstructured network.  Similarly, we used the Gnutella 
searching as another reference approach for its 
simplicity and prevalence, which, in fact, made it a 
widely used benchmark approach for many researches.  

In the simulation, the semantic data follows a Zipf 
(α=1) distribution between different peers. The 
simulation is initialized by injecting nodes one by one 
into the network until a certain network size has 
reached. After that, a mixture of join, leave and query 
are injected into the network based on certain ratios. 
The proportion of join to leave operations is kept the 
same to maintain the network at approximately the 
same size. On the average, each peer issues 50 queries 
during each run of the simulation. One assumption of 
our simulation is that a node only issues queries with 
local ontologies. The resource-discovery query is 
propagated exponentially, i.e.: each node chooses a 
certain number of neighbors (called walkers) to 
forward the query. The neighbor-discovery query is 
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propagated linearly, i.e.: only the node that issues the 
query forwards the query to a certain number of 
walkers, while all other nodes only forward the query 
to one neighbor. In the rest of the paper, we use the 
term “query” to refer to “resource-discovery query”. 
The simulation parameters and their default values are 
given in Table 3. 

 
Table 3. Parameters used in the simulations 

Parameter Range and default value 
network size 210~215  default: 10,000 
initial neighbors (node degree) 5 
avg node degree 14 
TTL 6 
resource-discovery query walkers 3 (propagate exponentially) 
neighbor-discovery query walkers 2 (propagate lineally) 
ontology categories 1~41  default: 20 
ontology schemas per domain 4 
distinct resources per domain 100 
Triple filter radius 2 
query possibility per time slice  20%~35%  default:20% 
churn possibility per time slice 5%~20%    default:5% 
neighbor probe possibility per 
time slice 

5%~20%    default:10% 

 
4.2. Results 
 

In this part, we present the experimental results 
which demonstrate the performance of our routing 
algorithm. 

 
4.2.1. Lookup efficiency. To evaluate the performance 
of our semantic search, we compare our algorithm with 
the other two algorithms in the metric of recall rate, 
which is defined as the number of results returned 
divided by the number of results actually available in 
the network. In terms of scalability to network size, we 
vary the number of nodes from 29 to 215.  
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Figure 4. Recall vs. network size  
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Figure 5. Recall vs. TTL (with walker#=5) 

 

Figure 4 compares the recall rate of the three 
routing strategies in different sized networks. OntSum 
dramatically outperforms the other two algorithms. 
Short-cut and Random’s recall rates decrease 
substantially as the network size increases, while 
OntSum achieves a very high recall rate even when the 
network size is very large. Figure 5 illustrates the 
relationship between query recall rate and query TTL 
when the number of walkers are set to 5. OntSum 
achieves a high recall rate with a small TTL, which 
means OntSum can resolve the query much faster. This 
is because OntSum searches the query only in its local 
domain; in addition, because of the RDV routing, 
OntSum always forwards the query to the right peers in 
a cluster.  
 
4.2.2. Searching and maintenance cost. Figure 6 
depicts the overhead in terms of the number of 
messages per hit under different query and churn 
frequencies.  
 

 
(a) In each time slice a node has a 35% possibility to issue a 

query, a 5% possibility to check neighbors’ update, and a 
5% possibility to join/leave. 

 

 
(b) In each time slice a node has a 20% possibility to issue a 

query, a 20% possibility to check neighbors’ update, and 
a 20% possibility to join/leave. 

 
Figure 6. Message overhead per query hit 

 
Experiments in Figure 6(a) are configured to have 

higher query frequency and lower churn frequency, 
compared with experiments in Figure 6(b). We can see 
that OntSum produces much fewer messages in both 
configurations. The overhead of OntSum includes 
resource-discovery query, neighbor-discovery query, 
and routing table update; while the other two 
algorithms only create resource-discovery query. We 
can see from the right sub-figures in Figure 6 (a) and 6 
(b) that the proportion of each part of the OntSum 
overhead is affected by the ratio of query frequency, 
node join/leave frequency, and routing table update 
frequency. When the churn rate and routing table 
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update frequency are high, the overhead created by 
routing table update accounts more in the total message 
overhead. Neighbor-discovery does not create many 
messages at all; the messages are too few to be visible 
in the figures.  
 
4.2.3. Effect of clustering. In our system, the node 
joining process configures the network topology with 
respect to ontology categories. The effect of the 
number of ontological categories on the performance 
of OntSum algorithm is given in Figure 7. The number 
of category is increased from 1 to 41 for a network of 
size 10,000. In Figure 7 (a), the recall increases as the 
number of category grows. This is easy to understand: 
more domains and clusters are created when the 
category number increases; therefore, searching has a 
smaller space to explore. From Figure 7 (b), we can see 
that the average message cost per query decreases, but 
the cost of neighbor-discovery query increases when 
the number of categories increases. 
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(a) recall vs. number of categories 
 

 
(b) Relation of query cost, neighbor-discovery cost and 

the number of semantic categories  
 

Figure 7. Effects of clustering 
 

4.2.4. Sensitivity to dynamics. Dynamics is common 
in large distributed systems. Thus a robust system 
needs to be resilient to the dynamics. Dynamics can 
affect both the routing table’s freshness and the 
underlying connectivity.  To evaluate the adaptability 
to different levels of dynamics, we measure the system 
performance under different level of peer churn rate.  
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Figure 8. Recall vs. peer churn possibility per time slice 
 

Figure 8 shows the relation of recall and the peer 
churn rate in a 5000-node network. When peers join or 
leave/die frequently, performances of short-cut and 
OntSum deteriorate, because the former loses its short-
cuts, and the latter loses its routing state freshness. On 
the other hand, we see OntSum has a good tolerance of 
the system dynamics. It achieves good recall even in 
scenarios with a high churn rate. 
 
5. Related work 
 

Research has harnessed the power of semantic 
technologies to aid in information representation, 
retrieval and aggregation over large distributed 
systems. They use the standard RDF language [16, 17] 
to describe data. Ontology languages such as 
DAML+OIL [18] and OWL [19] built on top of RDF 
allow describing relations between resources, thus 
defining a more abstract and expressive resource 
sharing environment. P2P technology has been used to 
improve the scalability and efficiency of the semantic 
searching. For example, systems such as Edutella [3] 
and InfoQuilt [21] use broadcast or flooding to search 
their semantic metadata, while many other projects, 
like RDFPeer [22] and OntoGrid [20] attempt applying 
DHT techniques to the retrieval of the ontology 
encoded knowledge. Applications like REMINDIN [23], 
Helios[24] and Bibster [25] add semantic short-cuts to 
intelligently forward queries to the right peers. 
 
6. Conclusion 
 

In this paper, we presented an efficient model for 
sharing and searching resources in an ontologically 
heterogeneous environment. In particular, we propose 
an ontology-aware topology construction method to 
group nodes sharing similar ontology together, so that 
queries only propagate in a relevant subset of peers. In 
addition, we   adopt an intelligent query routing 
scheme, which routes queries to peers that are most 
possibly possessing answers to the query. This system 
has been evaluated by a group of simulations, which 
show that the proposed routing schemes are both 
efficient and scalable. 
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