
A Scalable Semantic Routing Architecture for Grid Resource Discovery

Juan Li, Son Vuong
Computer Science Department, University of British Columbia

{juanli, vuong}@cs.ubc.ca

Abstract

Grids technology enables the sharing and
collaborating of wide variety of resources. To fully
utilize these resources, effective discovery techniques
are necessities. However, the complicated and
heterogeneous characteristics of the grid resource
make sharing and discovering a challenging issue. In
this paper we propose a comprehensive semantic
based resource discovery framework, which performs
an effective searching according to the semantic
properties of what is searched. In the framework,
nodes are grouped into clusters according to some
criteria. Resources are indexed and aggregated with a
highly compressed format. The summarized index can
act as network knowledge to guide routing in the
network. Intra-cluster and inter-cluster routing
strategies are proposed to support scalable and
efficient searching. Results from simulation
demonstrate that this architecture is very effective in
grid resource discovery.

1. Introduction

The popularity of the Internet, the ubiquity of
computers, and the availability of the high speed
network technologies have led to the development of
grid computing [1,2]. The objective of creating grids is
to share and access large and heterogeneous collections
of resources. Thus an effective and efficient resource
discovery mechanism is crucial to realize this goal.
However, in grids, the resource can have potentially
very large number and they may have varieties of types,
such as computing power, storage systems, network
bandwidth, data sources, software, and devices.
Moreover, they can be geographically distributed and
owned by different organizations. For all the above
reasons, the issue of resource discovery in large scale
grid environment is very challenging.

Traditionally, grid resource discovery is usually
managed with centralized or hierarchical servers. For

example, Globus MDS-2 [3] uses an LDAP based
directory service for resource registration and lookup.
Condor’s Matchmaker [4] adopts a centralized
mechanism to match the advertisement between
resource requesters and resource providers. However,
these centralized servers can become bottlenecks and
points of failures. So the system would not scale well
when the number of the nodes increases. Peer-to-peer
(P2P) applications have been successful in sharing
resource. A current trend is to combine P2P and grids
techniques together. [20] argues that these two
technologies will benefit from converging into each
other’s field. The unstructured P2P systems like
Gnutella [5] and FastTrack [12] often exploit either
flooding or broadcasting searching mechanisms, which
is clearly not scalable. Recently, super-peer networks
[13] like Morpheus [14] or KzzaA [15] have been
proposed to get the benefits of both centralized and
distributed search. The DHT based P2P systems [16-19]
are efficient and scalable, while a missing feature is the
ability to support complex query. More recently, A few
studies [10,21,22] extended the DHT scheme to
support keywords or multi-attribute query. However,
these systems require retrieving large amount of results
from many different peers to find the intersection.

 In this paper, we use RDF [6,7] to represent both
resource and query. To support complex query without
flooding the whole network, we use a hierarchical
semantic routing algorithm. The principle of the
algorithm is to use the content of query and the
knowledge of the network to drive routing decisions.
Specifically, nodes in the network are grouped into
clusters according to their mutual interest, and those
sharing similar interests are in the same cluster.
Therefore, most queries can be satisfied within the
cluster. Nodes in the same cluster build a tree. To share
resource among clusters, the roots of the trees in all the
clusters form an overlay network. Consequently, the
query routing has two phases: the intra-cluster routing
and the inter-cluster routing. Both routing schemes
utilize Bloom filter [8] based summarization to keep
and aggregate knowledge about the network. The

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

network knowledge can help route queries towards
peers known to have related concepts. This approach
guarantees a higher query hit ratio with respect to other
approaches oblivious of the resource location.
Moreover, it reduces both the network and the peers
load, thus providing a greater scalability.

The remainder of the paper is organized as follows.
Section 2 describes the RDF resource representation.
Section 3 explains the hierarchical semantic routing
scheme. Section 4 gives the experimental results.
Section 5 concludes the paper.

2. Resource representation

Metadata plays a central role in the effort of
providing search techniques that go beyond string
matching. We utilize RDF metadata representation to
encode the resources. The benefit of representing with
RDF is that the information maps directly and
unambiguously to a decentralized model. Unlike
traditional database systems, RDF does not require all
annotations of a resource stored on one server. The
ability for distributed allocation of metadata makes
RDF very suitable for the construction of distributed
repositories. The basic building block of RDF is the
triple which includes a subject, a predicate and an
object. The following example shows a fragment of the
metadata of an electronic book. The definition is
derived from the “Dublin Core” metadata definition
[23].

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-
ns#”
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="http://somewhere/Java
programming langrage">
 <dc:title> Java programming </dc:title>
 <dc:description>Java-Computer program
language</dc:description>
 <dc:creator>Ken Arnold</dc:creator>
 <dc:date>2002-09-01</dc:date>
 <dc:type> program language </dc:type>
 <dc:format>text/html</dc:format>
 <dc:language>en</dc:language>
</rdf:Description>
</rdf:RDF>

Figure 1. Resources representation with RDF syntax

With RDF representation, the resource providers can
give resources better descriptions and the resource
requesters can customize their requirements to make
queries more precise and flexible.

3. Semantic routing scheme

3.1. Frame work

The framework utilizes P2P technology and
hierarchical structure to improve the scalability and
robustness. Nodes are grouped into clusters according
to certain criteria, such as mutual interest,
administrative domain and network distance. In this
paper, nodes are clustered according to their registered
interests. Those sharing the same interest are in the
same cluster. Therefore, most queries will be satisfied
within the cluster. Nodes in the cluster build a semantic
tree. Queries are forwarded along tree paths leading
only to matching nodes. We utilize the Prinkey method
[24] to create the tree structure. In the tree, every node
has a local resource summary as well as aggregated
summaries from children branches. The query routing
is based on these summaries. The main improvement of
our scheme over the Prinkey scheme is the Bloom filter
indexing method.

The root node in every tree cluster has complete
knowledge of the entire cluster. To share resources
among clusters, root nodes connect with each other
forming an overlay network on top of the clusters.
Queries cannot be satisfied in the local cluster should
be forwarded to other clusters through the root nodes.
The overlay forwarding strategy has a great impact on
grids efficiency and scalability. We use semantic
routing to forward the query to nodes which are most
likely able to satisfy the query. Every root node
computes the overlay routing table according to its
knowledge of the local cluster as well as its knowledge
of neighbor clusters. They exchange routing info by
using a protocol similar to distance vector based IP
routing protocol, but with summarized resource
information inside. In this way, queries will be
forwarded to the nearest resource provider. This
hierarchical structure can achieve a balance between
the inherent efficiency of centralized search, and
scalability offered by distributed search. Figure 2
illustrates the resource discovery architecture.

Tree

Overlay

 Figure 2. System architecture

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

3.2. Resource summarization

To make the routing “smarter”, we should utilize the
prior knowledge of where desired objects are likely to
be to route the query. The RDF resource index is such
kind of knowledge. However, exchanging the RDF
indices between nodes is almost impossible, because
each node may maintain a great amount of resources.
Our strategy is summarizing the resource metadata.
Summarization can not only save bandwidth and
storage for transmitting and storing the metadata, but
also can decrease the query lookup time, because
summaries can be stored in the main memory. We use
Bloom filter to summarize the resource info.

To map a resource to the Bloom filter bitmap, we
hash all attribute combinations to the bitmap. For
example, a resource R with 4 attributes {a,b,c,d}, can
potentially satisfy 15 queries: {a}, {b}, {c}, {d}, {ab},
{ac}, {ad}, {bc}, {bd}, {cd}, {abc}, {abd}, {acd}, {bcd},
{abcd}. Therefore, all these 15 combinations should be
put into the bitmap. While, a resource with n attributes
may have 2n-1 combinations. When n is large, that
could be a huge number. To solve this problem, the
number of combinations should be restricted. We set a
maximal length m (m<=n), and only hash those
combinations, whose lengths are not greater than m, to
the bitmap. For resource R in the above example, if we
set m as 2, we only map 10 combinations ({a}, {b}, {c},
{d}, {ab}, {ac}, {ad}, {bc}, {bd}, {cd}) out of the 15
combinations to the bitmap. To determine if a query
can be satisfied by resources mapped into the bitmap,
we check all of the query’s constraint combinations
length up to m. If any of them is not in the bitmap, then
certainly the query cannot be matched. Otherwise we
conjecture that the query can be matched, although
there is a certain probability of “false positive.”
Restricting the attribute concatenation length reduces
the complexity of summarization, but it introduces
more false positives. Fortunately, we do not need the
strict accuracy for the summarization, because finally
we will check the accurate RDF to confirm the match.

3.3. Intra-cluster Routing

3.3.1. Overview. Since any connected graph can be
represented by a tree, tree is a natural representation of
connected graph. We adopt Prinky’s tree structure[24]
as a basic structure for intra-cluster routing, but
improve its approximate indexing scheme. In our tree
structure, every non-leaf node maintains a routing table
including several Bloom filter bitmaps: one bitmap for
local resource and the rest others for children. Each
node sends the merged bitmap to its parent. So every

internal node has a summarized view of a sub-tree
rooted by itself, and the root has a summarized view of
the entire tree. When a node receives a query, it checks
its routing table. If it finds match in local bitmap, it just
gives a positive reply. If it finds match from a child’s
bitmap, it forwards the query to that child. If neither of
them matches the query, and if the query is not
received from its parent, the query will be sent to its
parent. The parent will perform the same procedure.
This routing scheme forwards query only to nodes
lying on branches which potentially can satisfy the
query and avoids sending the query to other nodes.
3.3.2. Routing example. Figure 3 illustrates the index
aggregating and query forwarding process. In this
example, the Bloom bitmap size is 12 bits and 2 hash
functions (H1,H2) are used to map a resource. In reality
the size of the bitmap is much larger, and the number
of hash functions is always more. In the example, node
B’s routing table includes a local bitmaps, and two
children (D and E) bitmaps. A local resource z is
mapped to two positions: 2 and 3 in the bitmap
(H1(z)=2, H2(z)=3). So in B’s local bitmap, B2=1,
B3=1. B merges these three bitmaps by bitwise OR, and
sends the merged bitmap to its parent A. The merged
bitmap represents all resources from B and its
descendants. Now suppose D receives a query for
resource m. It first uses the two hash functions H1 and
H2 hashing m to 2 bits: 5 and 10 in the bitmap. Because
D cannot find match locally, it forwards the query to its
parent B. B cannot find match in its routing table either.
So B forwards the query to its parent A. A finds match
in child C’s bitmap (because C5=C10=1), then A
forwards the query to C. Similarly C finds match from
child F, so the query is then forwarded to F. Finally F
finds match in its local bitmap and it will check its
RDF database to further verify the query.

D

0 1 2 3 4 5 6 7 8 9 0 1

x(0,3)

local

combined

index from B

1 0 0 1 0 0 0 0 0 0 0 0

Ey(7,1)

0 1 0 0 0 0 0 1 0 0 0 0
0 1 2 3 4 5 6 7 8 9 0 1

B

0 1 2 3 4 5 6 7 8 9 0 1

z(2,3)0 0 1 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0

local

E

D

1 1 1 1 0 0 0 1 0 0 0 0
0 1 2 3 4 5 6 7 8 9 0 1

F

0 1 2 3 4 5 6 7 8 9 0 1

m(5,10)

combined

index from C

0 0 0 0 0 1 0 0 0 0 1 0

Gn(2,6)

0 0 1 0 0 0 1 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 0 1

C

0 1 2 3 4 5 6 7 8 9 0 1
p(8,1)0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0

0 0 1 0 0 0 1 0 0 0 0 0

local

G

F

0 1 1 0 0 1 1 0 1 0 1 0
0 1 2 3 4 5 6 7 8 9 0 1

A

0 1 2 3 4 5 6 7 8 9 0 1

y(7,1)

0 1 0 0 0 0 0 1 0 0 0 0

1 1 1 1 0 0 0 1 0 0 0 0

0 1 1 0 0 1 1 0 1 0 1 0

local

C

B

R

M

M

Query: {m}

Figure 3. Tree routing

3.3.3. False positive. As mentioned, the Bloom filter
index may raise false positives and the aggregation of
index may incur more of them. Therefore, the index is

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

only an approximation of the resource. It may lead
queries to nodes or branches that do not contain
relevant information. Luckily, this will not affect the
fidelity of the final query result, because node that
finally receives the routed query will check the accurate
RDF database to further verify it. As long as the false
positive rate is small, queries will be routed along
nearly optimal paths and most of the nodes that finally
receive queries will in fact contain relevant information.

3.4. Inter-cluster Routing

3.4.1. Overview. To share resource grid wide, we need
route queries among clusters. Because the root of every
cluster has a summarized index of the entire cluster,
naturally it becomes a representative of the cluster.
Root nodes connect with each other forming an overlay
network. We call the overlay routing algorithm:
resource-distance-vector (RDV) routing. It utilizes the
distance vector to route queries to the nearest matching
nodes. Every node (the root node) in the overlay
network maintains a resource routing table. It utilizes
the Bloom filter index, and adds distance information
into the index. Nodes maintain resource information
sent by their neighbors and update relevant entries in
their routing tables. The distance information is
updated from node to node and plus one whenever
passing through a node. We set a TTL, which we call
Radius, to limit the number of hops the resource
information can travel. When a node receives a query
request, the algorithm will choose the shortest route to
forward the query to. If there is more than one provider
supplying the same resource, with high probability, the
algorithm will forward the request to the nearest one.

Figure 4. RDV routing

3.4.2. Routing table. Each node maintains a resource
routing table which contains local and neighbor
resource vectors. All the vectors are implemented with
Bloom filters. Besides resource info, the vector also
records the distance (in terms of number of hops) to the
resource. So the Bloom index is now a vector of
numbers instead of a vector of bits. Each number is the
minimum distance to a matching resource. Figure 4
illustrates the formation of routing tables. In this
example, we use 3 hash functions to map a resource to
the vector. Node A’s local resource p is mapped to 3
numbers: 1, 2, and 9, so in A’s local vector, those 3
positions are set 1, representing 1 hop to the resource.
(We assume the root node of the cluster is 1 hop away
to any resources in that cluster). In A’s routing table,
neighbor B’s vector has 3 elements B4, B3, B5 set to 2.
That means resource y (4,3,5) is 2 hops away from A.

Node A merges all vectors in its routing table and
sends the merged vector to each of its neighbors. The
problem is how to decide the distance information in
the merged vector. The principle is: if there are
multiple paths to a resource, the node should always
choose the shortest one. Assume A’s combined vector
is X. So the value of X’s ith element is the minimal
value of all vectors’ ith element. (Note: 0 represents
in figure 4). For example, X3 = min(A3,B3,E3) =
min(,2,3) = 2. By doing this, hash positions related to
a resource may have different values. For example, in
A’s combined vector X, to check a resource x (1,3,10),
we find X1=1, X3=2, X10=3. According to the
aggregation process, it is not difficult to see that the
maximal value represents the real distance. Therefore,
the distance from node A to resource x is 3. The
combined vector is then added by 1 to every element
and sent to all of A’s neighbors. We set a hop count,
which we call Radius, to limit how far the resource info
can travel. When resource info passes as many as
Radius hops, it should not be forwarded any more. In
figure 4 Radius is set to 5. So when Xi>5 Xi is set to 0.
Through the aggregated vector, neighbors of A would
know what resources are available from node A, and
how far they are.

Each node sends updates to and receives updates
from its directly connected neighbors. When a node
receives routing information from a neighbor, it
updates its local table if the neighbor suggests a
“better” route than what it already knew about.
Eventually the table will stabilize and all resources
within the Radius range will be known. Nodes need
periodically “ping” neighboring nodes to make sure
they are still alive. In order to reduce the overhead for
transmitting the routing information, nodes in the
overlay network use a soft state routing update, that is,

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

periodically exchanging their resource info. At any
given time, the resource routing information may
potentially be stale or inconsistent. While, as we
mentioned, the algorithm dose not need the routing
table to be strictly correct, and the approximation will
not affect the system’s fidelity.
3.4.3. Query forwarding. If a node cannot match a
query locally, it will choose a “right” neighbor to
forward the query to. A query may be transferred by
several hops until it arrives at the matching node or the
TTL expires. In figure 4, node C receives a request for
resource x (1,3,10). It cannot find match in its local
vector. Then it checks its neighbor vector B and finds
B1=3, B3=2, B10=4. As mentioned, the maximum value
of B1, B3 and B10 represents the distance to resource x,
thus 4 hops are needed to locate x through B. Then the
request is forwarded to B. When B receives the query,
it looks up its routing table and finds 3 different paths
to x: path through neighbor A with 4 hops (A1=2, A3=3,
A10=4); through C with 5 hops (C1=4, C3=3, C10=5);
through E with 3 hops (E1=3, E3=3, E10=3). So the
shortest distance to resource x is 3 and through
neighbor E. Therefore the query is sent to E. Similarly,
E forwards it to D. D finds match in its local vector,
and then it checks its RDF database to further confirm
it.

4. Experiments

To better understand the system’s performance, we
evaluate the performance of its three key components:
the multi-attribute Bloom filter, the intra-cluster routing
algorithm, and the inter-cluster routing algorithm. Then
we integrate them as a complete system and test its
efficiency and scalability.

To become good summarization, the Bloom filter
index should be succinct while accurate enough. We
measure the Bloom filter performance in the metric of
false positive. In this experiment, there are 1000
resources. Every resource has at most 20 attributes. It is
difficult to emulate the real query pattern. So we made
up queries by randomly picking attributes from all
possible values and concatenating them together. Half
of the queries should be satisfied with the resources.
MD5 is utilized as the hash function and the number of
hush functions is 4. The maximal attribute
concatenation length is 3. Figure 5 illustrates the
relationship of false positive and Bloom filter size.
From the graph, we see that there is a tradeoff between
the false positive and the Bloom filter size: the larger
the bitmap the lower the false positive rate. As long as
the Bloom filter size is big enough, the percentage of
false positive can be very low. Therefore, we can use

Bloom filters to save storage with just slight risk of
false positives.

0%

2%

4%

6%

8%

10%

40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Bitmap s ize (KB)

fa
ls

e
po

si
ti

ve
 ra

te

Figure 5. Percentage of false positive

To test the effectiveness and the cost of the routing
scheme, we measured the intra-cluster routing and the
inter-cluster routing respectively with simulation. The
simulator models the physical network as a graph
where each node corresponds to a peer. A number of
RDF documents and a Bloom filter based routing table
are associated with each node. The resources are
randomly distributed to all nodes in the network with
duplication rate 35%. Every node may have 1 to 100
resources. To make comparisons, we simulate our
routing algorithms in conjunction with two well known
algorithms: Gnutella flooding and Random Walk.

First we compare the intra-cluster tree routing with
the other two routing algorithms in two important
performance metrics: the number of messages and the
routing hops to resolve a query. To guarantee every
query can finally be satisfied we set the query TTL as
infinity. From the results in figure 6 and figure 7, it is
clear that the intra-cluster tree routing algorithm has
better performance on both metrics than either flooding
or random work does.

0

500

1000

1500

2000

500 600 700 800 900 1000 1100 1200 1300 1400
of nodes

of

 m
es

sa
ge

s

Flooding
Random-walk
Tree

Figure 6. Intra-cluster routing:
average number of messages per query

0
200
400
600
800

1000
1200

500 600 700 800 900 1000 1100 1200 1300 1400

of nodes

of

 h
op

s

Flooding
Random-walk
Tree

Figure 7. Intra-cluster routing:
average number of hops per query

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

We also simulated the inter-cluster routing
algorithm: the RDV routing algorithm. The Radius of
the RDV algorithm is set to 3, and the average node
degree (number of neighbors) is 6. The resource
parameters are configured similar to the intra-cluster
routing. Figure 8 compares the number of messages
created to forward a query by each of the three routing
algorithms. We can see RDV algorithm created much
fewer messages than the other two algorithms. Figure 9
illustrates the relation of the query success rate with the
query TTL.

0

200

400

600

800

1000

1200

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

of nodes

av
g

of

 m
es

sa
ge

s

Flooding
Random-walk
RDV

Figure 8. Inter-cluster routing:
average number of messages per query

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6 7 8 9 10 11
TTL

re
ca

ll

Flooding
Random-walk
RDV

Figure 9. Inter-cluster routing:
percentage of query success rate vs. TTL

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12
Radius

of

 m
es

sa
ge

s

Figure 10. Influence of Radius

Figure 10 shows the influence of the Radius to the
query overhead. Initially, increasing the Radius will
increase the nodes’ knowledge of the network, thus
improving the query performance. When the Radius
grows to 4, nodes almost have a complete knowledge
of the network, then further increasing the Radius will
not bring more benefit.

Finally, we integrate the two phases of the routing
together and test them as a complete system. The
network size is fixed to 2000 nodes. Nodes are
randomly grouped into clusters and the size of a cluster
is from 30 to 200 nodes. Figure 11 compares the query
overhead to achieve certain successful hits by each of

the three routing algorithms. Obviously, our
hierarchical routing algorithm dramatically decreases
the query overhead. In this experiment, we randomly
cluster nodes. If we cluster them according to interest,
the system can achieve better performance. Figure 12
compares the performance of different clustering
strategies. It is clear that the interest-based clustering
performs better than the random clustering. That is
because nodes sharing the same interest are in the same
cluster, then most of the queries can be satisfied within
the cluster.

0

500000

1000000

1500000

2000000

2500000

100 200 300 400 500 600 700 800 900 1000
of hits

of

 m
es

sa
ge

s Flooding
Random-walk
Hierarchy

Figure 11. Hierarchical routing:
number of messages vs. hits

0
5000

10000
15000
20000
25000
30000

100 200 300 400 500 600 700 800 900 1000
of hits

of

 m
es

sa
ge

s random
interest-based

Figure 12. Influence of clustering method

5. Conclusion

As more and more resources appear in grids, there is
an increasing need to discover these resources
effectively and efficiently. In this paper, we present a
novel design for resource discovery in large scale grids.
It is based on the P2P model and it provides complex
query interface. The system is designed to scale to
large number of groups, large group size and to support
complex resource query.

The system supports rich resource description and
query by encoding the resource and query with RDF.
Therefore, the resource providers can give resources
better descriptions and the resource requesters can
customize their requirements to make the query more
powerful. To improve the system scalability, nodes are
grouped into clusters. Two efficient routing algorithms:
the intra-cluster routing and the inter-cluster routing are
proposed. Both routing algorithms utilize Bloom filters
as the basic data structure to aggregate resource
information and help route the queries. The intelligent
routing scheme is able to route queries to the nodes
where the target resources are located, and to avoid
flooding the queries to all other irrelevant nodes. The

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

system has been evaluated by simulations. The
experiment results prove that the routing schemes are
efficient and scalable.

6. References

 [1] I. Foster, C. Kesselman, and S.Tuecke. “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations”,
International Journal of High Performance Computing
Applications, 15(3), 2001
[2] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. “The
physiology of the Grid: An Open Grid Services Architecture
for distributed systems integration.” Technical report, Open
Grid Services Architecture WG, Global Grid Forum, 2002
[3] K. Globus Czajkowski, S. Fitzgerald, I. Foster, and C.
Kesselman, “Grid information services for distributed
resource sharing”. Proc. of 10th IEEE symposium on High
Performance Distributed Computing (2001).
[4] R. Raman, M. Livny, M. Solomon, “Matchmaking:
Distributed Resource Management for High Throughput
Computing”. Proc. of IEEE Intel. Symp. On High
Performance Distributed Computing, Chicago, USA (1998).
[5] Gnutella website. http://gnutella.wego.com/
[6]Ora Lassila and Ralph R. Swick, “W3C Resource
Description framework (RDF) Model and Syntax
Specification”.
[7]Dan Brickley and R.V.Guha. “W3C Resource Description
Framework (RDF) Schema Specification”.
http://www.w3.org/TR/1998/WD-rdf-schema/
[8] B.Bloom. “Space/time tradeoffs in hash coding with
allowable errors”. Communications of the ACM, pages
13(7):422-426, July 1970.
[9] I. Foster, C. Kesselman, “Globus: A Toolkit-based Grid
Architecture”. In Foster, I. and Kesselman, C. eds. The Grid:
Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, 1999
[10] S. Shi, Y. Guanwen, D. Wang, J. Yu, S. Qu and M.
Chen “Making Peer-to-Peer Keyword Searching Feasible
Using Multi-level Partitioning”. Proc. Of the 3rd
International Workshop on Peer-to-Peer Systems, San Diego,
CA, USA, February.
[11] The Napster protocol specification.
 http://opennap.sourceforge.net
[12] The FastTrack website. http://www.fasttrack.nu/
[13] B.Yang and H.Garcia-Molina, “Designing a Super-Peer
Ntrwork”, Proc. 19th Int’l Conf. Data Engineering, IEEEE
Computer Society Press, Los Alamitos, CA, March 2003
[14] Morpheus home page, http://www.morpheus.com
[15] Kazaa website. http://www.kazaa.com/
[16] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.
“Tapestry: An Infrastructure for Fault-Tolerant Wide-Area
Location and Routing,” Technical Report, UCB/CSD-01-
1141, April 2000.
[17] A. Rowstron and P. Druschel. “Pastry: Scalable,
Distributed Object Location and Routing for Large-Scale
Peer-to-Peer Systems,” Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms,
Middleware, November 2001.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H.Balakrishnan. “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications,” ACM SIGCOMM, August
2001, pp. 149-160.
[19] S. Ratnasamy, P.Francis, M.Handley, R.Karp, and S.
Shenker. “A Scalable Content-Addressable Network,” ACM
SIGCOMM, August 2001, pp. 161-172.
[20] A. Iamnitchi, I. Foster, J. Weglarz, J. Nabrzyski, J.
Schopf, and M. Stroinski, “A Peer-to-Peer Approach to
Resource Location in Grid Enviroments”, eds. Grid Resource
Management, Kluwer Publishing, 2003.
[21] Reynolds, P. And A. Vahdat, “Efficient Peer-to-Peer
Keyword Searching”. ACM/IFP/USENIX International
Middleware Conference, Rio De Janeiro, Brazil, June 2003
[22] M. Cai, M. Frank, J. Chen and P. Szekely, “ MAAN: A
Multi-Attribute Addressable Network for Grid Information
Services” The 4th International Workshop on Grid
Computing, 2003.
[23] Dublin Core metadata definition: http://dublincore.org/
[24] Michael T. Prinkey, “An Efficient Scheme for Query
Processing on Peer-to-Peer Networks,” Aeolus Research, Inc.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

