Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

THIE [INAFEENATFIENYAL JEDERNAL @)=

= GiC:E

ERIE ECEMEUTNG ANGE aSEIENEE

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Future Generation Computer Systems 26 (2010) 361-373

journal homepage: www.elsevier.com/locate/fgcs S

Contents lists available at ScienceDirect

Future Generation Computer Systems

Grid resource discovery based on semantically linked virtual organizations

Juan Li

Computer Science Department, North Dakota State University, United States

ARTICLE INFO ABSTRACT

Article history:

Received 19 January 2009
Received in revised form

5 July 2009

Accepted 24 July 2009

Available online 12 August 2009

Locating desirable resources and information from a large-scale grid is challenging due to the considerable
diversity, large number, dynamic behavior, and geographical distribution of the resources. In this
paper, we propose an efficient discovery framework which organizes a grid network by a semantically
linked overlay representing the semantic relationships between grid participants. Specifically, we use
a semantics-aware topology construction method to group similar nodes to form a semantic small-
world. With the small-world topology constructed, resource-discovery queries will be propagated only
between semantically related nodes, which greatly improves the efficiency and accuracy of resource

Keywords: N A . X .. X Y N
Se?)nantic Link Network discovery in grids. Moreover, we propose a novel algorithm for efficient resource information integration
Grid and searching over the semantic small-worlds. Our experiments with simulations substantiate that this
Discovery framework significantly improve the search expressiveness, efficiency, scalability, and precision.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Grid computing is a virtualized distributed computing environ-
ment aimed at enabling the sharing of geographically distributed
resources. Grid resources have traditionally consisted of dedicated
super-computers, clusters, or storage units. With the present ubiq-
uitous network connections and the growing computational and
storage capabilities of modern everyday-use computers, more re-
sources such as PCs, devices (e.g., PDAs and sensors), applica-
tions, and services are on grid networks. Grid is expected to evolve
from a computing and data management facility to a pervasive,
world-wide resource-sharing infrastructure. To fully utilize the
wide range of resources in the grid, effective resource discovery
mechanisms are required. However, resource discovery in large-
scale semantic grids is very challenging due to the potentially large
number of resources, and their diverse, distributed, and dynamic
nature. In addition, it is equally difficult to integrate the informa-
tion sources with a heterogeneous representation format.

The provision of an information service [1], as currently envis-
aged by the grid community, is a first step towards the discov-
ery of distributed resources. However, a large part of these ef-
forts have been focused on “getting it to work,” without directly
addressing issues of scalability, reliability, and information qual-
ity [2]. For example, classical grids always use centralized or static
hierarchical models to discover resources. The Globus Toolkit [3]
is a famous example. Globus users can get a node’s resource infor-
mation by directly querying a server application running on that
node, or querying dedicated information servers that retrieve and

E-mail address: j.li@ndsu.edu.

0167-739X/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2009.07.011

publish the resource information of the organization. Although in-
teractions between these information servers are supported, the
general-purpose decentralized service discovery mechanism is still
absent. To discover resources in a more dynamic, large-scale, and
distributed environment, peer-to-peer (P2P) techniques have been
used in resent research (e.g., [4,5]). P2P systems offer many ben-
efits, such as adaptation, self-organization, fault-tolerance, and
load-balancing, but they also present several challenges that re-
main obstacles to their widespread acceptance and usage in grids:
First, current P2P systems offer limited data management facilities;
in most cases, searching information relies on simple identifiers
or Information Retrieval (IR)-style string matching. This limitation
is acceptable for file-sharing applications, but in order to support
complex resource discovery in semantic grids, we need richer facil-
ities for exchanging, querying and integrating structured and semi-
structured data. Second, most P2P systems specialize in a single
functionality, for example, music sharing. More work needs to be
done to support the sharing of varieties of resources in grids. More-
over, designing a good search mechanism is difficult in P2P sys-
tems because of the scale of the system and the unreliability of
individual peers.

This paper seeks to provide a general solution to the above-
mentioned problem. It proposes a framework to share and dis-
cover resources on an unprecedented scale, and for geographically
distributed groups to work together in ways that were previously
impossible. To get enlightened by the recently proposed Seman-
tic Link Network (SLN) [6,7], we propose a distributed semantics-
based discovery framework. We make use of SLN model to enable
rich semantic representation, reasoning, execution, and to con-
struct a “semantic small-world” structure—OntoSum. OntoSum is
based on the observation that query transferring in social networks

362 J. Li / Future Generation Computer Systems 26 (2010) 361-373

is made possible by locally available knowledge about acquain-
tances. Because of the similarity between grid networks and social
networks and the fact that human users of grid networks direct
grid nodes’ links, we argue that grid networks can also utilize this
phenomenon to discover resources. Peers in OntoSum use their on-
tology summary to represent their expertise; they learn and store
knowledge about other peers with a view to their potential for
answering prospective queries. This way, the network topology is
reconfigured with respect to peers’ semantic properties. This re-
configuration partitions the large unorganized search space into
multiple well-organized semantically related sub-spaces, which
we call semantic virtual organizations. Semantic virtual organiza-
tions help to discriminatively distribute resource information and
queries to related nodes, thus reducing the search space and im-
proving scalability. To further improve the efficiency of searching
the virtual organizations, we propose a semantics-based resource-
integrating and routing algorithm RDV (representing for Resource
Distance-Vector-based), in which resource semantic metadata is
decomposed into different coarse-grained elements, and then
these elements are indexed with different schemes to improve
scalability. We evaluate the performance of our system with ex-
tensive simulation experiments, the results of which confirm the
effectiveness of the design.

The remainder of this paper is organized as follows: Section 2
presents the concept, property and construction of a semantic
small-world architecture—OntoSum. Section 3 explains how
resource discovery is performed in OntoSum. Section 4 proposes
a comprehensive semantics-based query routing algorithm, RDV,
which works as an improved routing algorithm to forward queries
inside OntoSum clusters. Simulation experimental results are
given in Section 5. Related work and concluding remarks are
provided in Sections 6 and 7, respectively.

2. Semantic small-world

A widely-held belief pertaining to social networks is that any
two people in the world are connected via a chain of six acquain-
tances (six-degrees of separation) [8]. The famous Milgram’s exper-
iments illustrated that individuals with only a local knowledge of
the network (i.e., their immediate acquaintances) may successfully
construct acquaintance chains of short length, leading to networks
with “small-world” characteristics. Small-world networks exhibit
special properties, namely, a small average diameter and a high
degree of clustering. A small diameter corresponds to a small
separation between peers, while a high clustering signals tight
communities. Small world graphs contain inherent community
structure, where similar nodes are grouped together in some
meaningful way. Intuitively, a network satisfying the small-world
properties would allow peers to reach each other via short paths
while maximizing the efficiency of communication within the clus-
tered communities.

We draw inspiration from small-world networks and organize
nodes in our system to form a small-world topology, particularly
from a semantic perspective. Our objective is to make the sys-
tem’s dynamic topology match the semantic clustering of peers,
i.e,, there is a high degree of semantic similarity between peers
within the clustered community; this would allow queries to be
quickly propagated among relevant peers as soon as one of them is
reached. To construct the semantic small world network depicted
above, we follow the idea of the Kleinberg experiment [9]: each
node keeps many close neighbors (short-range contacts), as well as
a small number of distant neighbors (long-range contacts). The dis-
tance metric in our system is determined by nodes’ semantic simi-
larity. With the semantics-based small-world constructed, a query
can be efficiently resolved in the semantic cluster neighborhood
through short semantic paths.

2.1. Semantic basics

A major focus of our discovery solution is to provide an
intelligent semantic search to overcome the problem of traditional
keyword-based search. We employ ontology domain knowledge
and SLN to assist in the search process, so that queries can be
properly interpreted according to their meanings in a specific
domain with the inherent relations between concepts also being
considered.

2.1.1. Ontology-based metadata representation

Metadata, the data about data, is a crucial element of
a discovery infrastructure. Effective metadata requires shared
representations of knowledge as the basic vocabulary from which
metadata statements can be asserted. An ontology, “a shared and
common understanding of a domain” [10], is precisely intended
to convey that kind of shared understanding. Therefore, we
use ontologies to represent resource metadata semantics. An
ontological representation defines concepts and relationships. To
cope with the openness and extensibility requirements, we adopt
two W3C recommendations: the Resource Description Framework
(RDF) [11] and the Web Ontology Language (OWL) [12] as our
ontology language. We concentrate on RDF’s property of making
statements about resources in the form of subject-predicate-object
expressions, called triples in RDF terminology. The subject denotes
the resource which has a Universal Resource Identifier (URI). The
predicate denotes traits or aspects of the resource and expresses
a relationship between the subject and the object. The object is the
actual value, which can either be a resource or a literal. The concept
of triple is very important in our work, because our metadata
indexing scheme is based on this triple representation.

In our system the ontology knowledge is represented by OWL-
DL and is separated into two parts: the terminological box (T-Box)
and the assertion box (A-Box) as defined in the description logic
terminology. The purpose of distinguishing between the T-Box
and A-Box is to enable different coarse-grained indexing based on
these two cases. The T-Box is a finite set of terminological axioms,
which includes all axioms for concept definition and descriptions
of domain structure. The A-Box is a finite set of assertional axioms,
which includes a set of axioms for the descriptions of concrete data
and relations. Separating the T-Box and A-Box enables different
coarse-grained knowledge indexing, thus increasing the scalability
of the system.

2.1.2. Semantic links

For many reasons, different people and organizations tend
to use different ontologies. Therefore, we have to deal with
situations where various local ontologies developed independently
are required to be integrated as means for extracting information
from the local ones. Semantic links provides a layer from which
several ontologies could be accessed and hence information could
be exchanged in a semantically sound manner. Semantic links
relates the entities of two ontologies that share the same domain of
discourse in such a way that the logical structure and the intended
interpretations of the ontologies are respected. We adopt the
semantic links defined by Zhuge in [13]. In particular, a semantic
link between two ontologies can be one of the following types:

1. Equal-to, denoted by Pi—equ — Pj, says that Pi is semantically
equal to Pj. The equal-to link is reflexive, symmetric, and transitive.

2. Similar-to, denoted by Pi — (sim, sd) — Pj, says that Pi is
semantically similar to Pj to the degree sd.

3. Reference, denoted by Pi — ref — Pj, says that Pi refers
semantically to Pj.

4, Implication, denoted by Pi — imp — Pj, says that Pi
semantically implies Pj. The implication link is transitive and can

J. Li / Future Generation Computer Systems 26 (2010) 361-373 363

0SS for an ontology O */
createOss (Ontology O)

0Sss={};

add c, p, to 0SS
H ={hypernyms of S}

if H + Sp, !=null

/* This algorithm generates the refined Ontology Signature Set

for each ¢ e€{concepts of ontology O}
o is parent concept of ¢

for each S e{senses of c}

for each Spe{senses of p,)

add S_,Sp, to 0SS

Fig. 1. Arefined algorithm to generate the Ontology Signature Set.

help the reasoning mechanism to find new semantic implication
relationships.

5. Subtype, denoted by Pi — st — Pj, says that Pj is semantically
a part of Pi. The subtype link is transitive.

6. Sequential, denoted by Pi — seq — Pj, says that the content of
Pj is the successor of the content of Pi in a context.

Reasoning rules based on the semantic links are defined in [13].

2.2. Semantic similarity

There has been extensive research [14-16] focusing on
measuring the semantic similarity between two objects in
the field of information retrieval and information integration.
However their methods are very complicated and computationally
intensive. In this paper, we propose a simple method to compute
the semantic similarity between two peers.

2.2.1. Ontology signature set (0SS)

To measure the semantic similarity between peers, we need to
extract each peer’s semantic characteristics. The representation of
these characteristics should be lightweight, so that they can be
efficiently exchanged between peers and the similarity based on
these characteristics can be easily computed. As mentioned, the
T-Box part of an ontology defines high-level concepts and their
relationships like the schema of a database. It is a good abstraction
of the ontology’s semantics and structure. Therefore, our semantic
property representation is based on T-Box knowledge. A naive
approach is to extract the class and property labels from its T-Box
ontology, and put them into a set. This set is called this node’s
Ontology Signature Set (0SS). We can measure the similarity of
two ontologies by comparing the elements of their OSSs. This
summarization is simple and concise, but on the other hand, it
is not precise; it ignores the inherent relationships between T-
Box concepts and thus damages the semantic meaning of each
concept. A semantic meaning may be represented by different
labels in different ontologies, while it is also possible that the
same literal label in different ontologies means totally different
things. Therefore, two semantically equivalent ontologies may
have totally different OSSs, while two similar OSSs may represent
two completely different ontologies. Ontology comparison based
on primitive OSSs may not yield satisfying results.

One improvement is to extend each concept with its semantic
meanings, so that semantically related concepts would have
overlaps. Based on this intuition, we use the lexical database,
WorldNet [17], to extend the OSS to include words which are
semantically related to the concepts from the original set. WordNet
maps word forms in word senses using the syntactic category as a
parameter. Words of the same syntactic category that can be used
to express the same meaning are grouped into a single synonym
set, called synset. An intuitive idea of extending an 0SS is to extend

each concept with its synset, i.e., its synonyms. Given a primitive
0SS consisting of a number of ontology concept labels, we lookup
each concept in the WordNet lexicon and extend each concept with
its synonyms in the synset. In this way, two semantically related
ontologies would have common WordNet terms in their extended
0SSs. Besides synonyms, we also extend OSS concepts with their
hypernyms (is_a relationship).

After extension, an OSS may get a large number of synonyms
for each concept. However, not all of these synonyms should be
included in the set, because each concept may have many senses
(meanings), and not all of them are related to the ontology context.
Having unrelated senses in the OSS will diminish the accuracy of
measuring the ontology difference and incur higher computation
cost for set operations. Therefore, we have to prune the expanded
0SS to exclude those unrelated terms. We utilize relations between
the concepts in an ontology to further refine the semantic mean-
ing of a particular concept. Only words with the most appropriate
senses are added to the OSS. Since the dominant semantic rela-
tion in an ontology is the subsumption relation (super-class, the
converse of is-a, is-subtype-of, or is-subclass-of), in this develop-
ment phase of our system, we use the subsumption relation and the
sense disambiguation information provided by WordNet to refine
0SSs. It is based on a principle that a concept’s semantic meaning
should be consistent with its super-class’s meaning. We use this
principle to remove those inconsistent meanings. The refined al-
gorithm to generate the OSS is illustrated with the pseudocode in
Fig. 1.

The algorithm in Fig. 1 creates the refined OSS by adding the
appropriate sense set of each ontology concept based on the sub-
class/super-class relationships between the parent concepts and
child concepts. For every concept in an ontology, we check each of
its senses; if a sense’s hypernym has an overlap with this concept’s
parent’s senses, then we add this sense and the overlapped parent’s
sense to the OSS set. In this way, we can refine the 0SS and reduce
imprecision. The complexity of this algorithm is N x a®> where N is
the number of T-Box concepts of an ontology, a is a constant rep-
resenting the average number of senses of a concept in WordNet.
The major cost of this algorithm is for storing and searching the
WordNet dictionary.

2.2.2. Peer semantic similarity

To compare two ontologies, we define an ontology similarity
function based on the refined OSS. The definition is based
on Tversky’'s “Ratio Model” [18], which is evaluated by set
operations and is in agreement with an information-theoretic
definition of similarity [19]. Our similarity function is based on the
normalization of Tversky’s model to give a numeric measurement
of ontology similarity.

364 J. Li / Future Generation Computer Systems 26 (2010) 361-373

medical domain

Fig. 2. A sample network topology.

Definition 1. Assume A and B are two peers, and their extended
Ontology Signature Sets are S(A) and S(B) respectively. The
semantic similarity between peer A and peer B is defined as:

ISA)NSB)|

sim(A, B) = .
IS(A) NS(B)| + «|S(A) — S(B)| + BIS(B) — S(A)]

(1)

“w . n

In the above equations, “N” denotes set intersection, is set
difference, while “| |” represents set cardinality, “«” and “B” are
parameters that provide for differences in focus on the different
components. The similarity sim, between A and B, is defined in
terms of the semantic concepts common to 0SS of A and B: S(A) N
S(B), the concepts that are distinctive to A : S(A) — S(B), and the
features that are distinctive to B : S(B) — S(A). The parameters
o and B are non-negative, determining the relative weights of
these two components. The similarity depends not only on the
proportion of features common to the two ontologies but also on
their unique features and the relative importance varies with the
parameters « and B. With the similarity measure specified, we
have the following definition:

Definition 2. Two nodes, node A and node B are said to be
semantically equivalent if their semantic similarity measure,
sim(A, B) equals 1 (implying sim(B, A) = 1 as well). Node A is said
to be semantically related to node B, if sim(A, B) exceeds the user-
defined similarity threshold t (0 < t < 1). Node A is semantically
unrelated to node B if sim(A, B) < t.

2.3. Small-world topology adaptation

In Kleinberg's small-world experiment [9], to form a network
with small-world characteristics nodes keep many “local” contacts
and one “remote” contact. Our semantic topology construction is
based on this idea. In our system, a node distinguishes three kinds
of neighbors based on their semantic similarity. A peer A’s neigh-
bor, B, can be one of these three types: (1) zero-distance neighbor
(or semantically equivalent neighbor), if sim(A, B) = 1, (2) short-
distance neighbor (or semantically related neighbor) if sim(A, B) >
t (0 < t < 1isA’s semantic threshold), (3) long-distance neigh-
bor (or semantically unrelated neighbor) if sim(A, B) < t. A node
always tries to find as many close neighbors as possible, but it also
keeps some long distance neighbors to reach out to other ontolog-
ical clusters.

Nodes in the system randomly connect to each other through
these three types of neighbor links. They produce a semantically
clustered small-world topology. The cluster structure is not flat
but multi-layered; nodes with similar ontological topics (short-
distance neighbors) form a domain; inside the domain, nodes may
create smaller clusters if they share the same ontology schema.

Fig. 2 shows a high level view of a sample network topology.
All peers in the medical domain are interested in information
related to medicine. They may be interested in different aspects
of the medical resources, and they may use different ontologies
to describe their resources. They connect with each other through
short-distance links. Inside the medical domain, nodes further
organize themselves to finer-grained clusters based on their
ontologies. For example, nodes Ny, N, N5, and Ng use the same
ontology, onto, (e.g., a medical ontology, SNOMED-RT [20]), thus
they are zero-distance neighbors and form the same-ontology
cluster. In the rest of this paper, we use the term “domain” to
represent a group of clusters sharing similar ontological topics,
and use the term “cluster” to denote the ontologically equivalent
cluster. Clusters and domains do not have fixed boundaries; they
are formed by randomly connecting relevant nodes.

Once the semantic topology has been created, resource discov-
ery can be performed inside local clusters and domains. To effi-
ciently resolve both queries, each node maintains a finer-grained
knowledge of neighbors semantically closer to it, but a coarser-
grained knowledge of neighbors further from it. This reflects the
characteristic of our routing strategy, in which the query first walks
around the network, and once it reaches the target cluster, it zooms
in on that cluster and investigates its detailed ontology properties.

2.3.1. Inter-cluster routing table

The construction of an ontology-based topology is a process of
finding semantically related neighbors. A node joins the network
by connecting to one or more bootstrapping neighbors and
forwards the neighbor-discovery query to the network through its
bootstrapping neighbors. We can use popular P2P bootstrapping
mechanisms, such as Web Cache, previously stored list of active
users, proxy servers, or local network broadcasting, to determine
the initial neighbors. The neighbor-discovery query routing is in
fact a process of inter-cluster routing and is based on the inter-
cluster routing table.

Anode’s inter-cluster routing table stores the abstract semantic
knowledge of its neighboring clusters. Specifically, it keeps
contacts to those clusters—its short-distance and long-distance
neighbors, their semantic similarities to this node, and their 0SS
mapped in a compressed Bloom filter. To reconcile the semantic
differences between clusters, inter-ontology mappings (as defined
in Section 2.1.2) are also stored in the inter-cluster routing table. A
query can then be forwarded to a neighbor after being translated
according to the inter-ontology mapping. A neighbor-discovery
query is mainly routed over clusters to quickly locate related
clusters. A resource-discovery query is always forwarded inside
clusters because of the topology’s semantic locality property.

To control the overhead of routing table maintenance, a soft-
state update mechanism is used to keep the routing information

J. Li / Future Generation Computer Systems 26 (2010) 361-373 365

/* When a node N receives a neighbor-discovery query Q issued by a
new joining node X, N calls this function to process the query*/

process_neighbor_discovery_query (query Q)

if Q has been received before, discard it, return
compute the semantic similarity between X and N, sim(X,N)
if (sim (X,N) =1)
send a reply indicating N is X's zero-distance neighbor
the reply also contains N's zero-distance neighbours
5. if (threshold <sim(X,N) < 1)
6. send a reply indicating N is X's short-distance neighbor
7
8

Eal

. if (TTL does not expire)
for each neighbor N;in N's inter-cluster table

9. compute the semantic similarity sim(X, N
10. if (sim(X, N)) Z threshold)

11. forward Qto N;

12. if no N; found

13. forward Q to N'’s long distance neighbors

Fig. 3. The algorithm of neighbor-discovery query.

up-to-date; nodes periodically probe their neighbors and propa-
gate updated ontology information to them. At any given time, the
resource routing information may potentially be stale or inconsis-
tent, but in the long run, they are good enough to direct query for-
warding to the right peers.

2.3.2. Neighbor discovery query

When a node N receives a neighbor-discovery query Q which
tries to find neighbors for a new joining node X, N computes
the semantic similarity between X and itself. If N is semantically
related to X, N will send a Neighbor Found reply to X. If the query’s
TTL has not expired, N computes the semantic similarity between
X and each of its neighbors, and forwards the query to semantically
related neighbors. If no semantically related neighbors are found,
the query will be forwarded to N’s long-distance neighbors. The
detailed query processing algorithm is illustrated in Fig. 3.

A neighbor discovery query aims to locate short-distance and
zero-distance neighbors for the querying node. Bootstrapping
neighbors can be candidates for long-distance neighbors if they
are not semantically related to the querying node. Information of
short-distance and long-distance neighbors is used to construct
a node’s inter-cluster routing table. After a node finds its short-
distance neighbors, it will contact them to map ontologies with
them. Queries are translated whenever passing along short-
distance links.

3. Resource discovery in OntoSum

With the semantic small-world topology constructed, resource
discovery can be efficiently performed. In most cases, a resource
discovery query can be answered within the querying node’s lo-
cal domain, because queries reflect the querying node’s ontology
interest, and semantically related nodes are within the neighbor-
hood of the querying node. When a node issues (or receives) a
query, it first chooses its zero-distance neighbors to forward the
query inside the local cluster. Since they use the same ontology,
the zero-distance neighbors are the best candidates to forward the
query to. Another important step in query processing is to refor-
mulate a peer’s query over other peers on the available semantic
paths. Starting from the querying peer, the query is reformulated
over the querying peer’s short-distance neighbors, then over their
short-distance neighbors, and so on until the query TTL expires.
Because of the small-world property, the query can get enough an-
swers within a small number of hops with high probability. The
query reformulation is according to the inter-ontology mappings.

Since the ontology mapping between two clusters rarely maps all
concepts in one cluster to all concepts in the other, mappings typ-
ically lose some information and can be partial or incomplete; the
reformulated query may deviate from the original query’s inten-
tion, and the query result should be evaluated at the querying node.
Feedback on query results can be used to improve the quality of
inter-ontology mappings. Moreover, nodes can learn from query
results to update their neighbors. Therefore, when a node updates
its semantic interests, the system is able to adjust that node’s links
accordingly.

Sometimes, users may want to locate resources in other
semantic domains. In this case, they would first locate the related
domain using the inter-cluster routing algorithm; then they can
follow procedures just mentioned to process the query in that
domain. The semantic domains and clusters reduce the search
time and decrease the network traffic by minimizing the number
of messages circulating among domains and clusters. Inside
the cluster, nodes randomly connect with their zero-distance
neighbors sharing the same ontology schema. Queries looking
for particular resources can be routed inside the cluster using
flooding- or random-walk- based simple forwarding algorithms.
To further improve the performance of intra-cluster searching,
we propose an efficient intra-cluster routing algorithm which is
presented in the next section.

4. RDV routing

To efficiently forward resource discovery queries inside the
cluster, we propose the Resource Distance Vector (RDV) routing
algorithm. The main idea of this algorithm is to build and integrate
each node’s ontological instance summaries. When processing a
query, the summaries are used in a pre-processing step to find
peers that are likely to provide relevant answers to the query. The
RDV algorithm can be used independently as a semantics-based
routing algorithm in a network with a fixed ontology schema.

4.1. Triple filters

Compared with the whole network, the size of a cluster
is relatively small. Therefore, it is possible to index more
detailed ontology information into the intra-cluster routing table.
Unlike the inter-cluster routing tables which store abstract T-
box knowledge, the intra-cluster routing table records detailed A-
Box knowledge from neighbors inside the same cluster (i.e., zero-
distance neighbor). In the rest of this section, we use the term
“neighbor” to represent a zero-distance neighbor. Every peer
maintains a resource index table, and peers exchange their indices.
Queries can then be distributed by relaying based on these
indices. However, the instance-level indexing can be expensive
due to the large number of instances. To reduce the overhead
of propagating the index information, we propose a lightweight
indexing summarization scheme based on a concise data structure
— Bloom filter [21].

We extend the classical Bloom filter to a structure called a triple
filter. As mentioned, the building block of RDF statements is a triple
including a subject, a predicate, and an object. Any RDF statement
can be represented by a sequence of triples. A triple filter includes
three different Bloom filters: the subject filter, the predicate filter,
and the object filter. These three filters work together to represent
the RDF triples and answer triple membership queries. To store
an A-Box RDF statement, the statement is first decomposed to
sequence of triples and these triples in turn can be mapped to
the corresponding triple filters. The sizes of the subject filter,
the predicate filter, and the object filter may be different, so is
the number of hash functions used on these filters. Normally,
the object filter has a larger size and uses more hash functions,

366 J. Li / Future Generation Computer Systems 26 (2010) 361-373

while the predicate filter has a smaller size and uses fewer hashes,
because a particular ontology usually has more distinct objects
than distinct predicates. To identify the existence of a triple, three
parts of the triple are mapped to the corresponding filters. If all of
them are found in the triple filter, we conjecture that the queried
triple exists. Every node maintains a local triple filter and several
aggregated neighbor triple filters. These filters form a routing table
that directs query forwarding.

4.2. RDV routing table

We construct the RDV routing table (RDVT) based on the triple
filters. Specifically, each node in the network keeps a modified
triple filter for every neighbor (adjacent node) in the overlay
topology. A neighbor filter is created by merging filters of all
nodes d hops away from that neighbor; therefore it keeps track
of resources reachable via d hops through the overlay network
starting with that neighbor. We add distance information to the
triple filter, so that we can not only know how far away the
resource is located, but also control how far a node can “see”
its neighborhood; together with the neighbor summaries, we can
determine where to forward a particular query. In a routing table,
each entry in the triple filter is not a single bit but rather a
small counter. Initially, all entries are set to infinity (represented
by a special number). When a local resource is inserted, the
corresponding counters are set to 0, meaning the distance is O,
representing a local resource. When the summary is propagated
to another node, the counters corresponding to each resource are
incremented. To control the false positives caused by Bloom filter
aggregation, we set the maximum value of the counter, which we
call the radius. The radius limits the number of hops the resource
information can be propagated. After a series of propagations, if
a resource is propagated to a node which is more than radius
away, then its entries in the RDVT are set to infinity (not available).
Because of the small-world theory, nodes are connected with a
small number of hops. Therefore, a small radius works for our
system. As revealed by our experiments, 3 bits per counter should
suffice.

Fig. 4 shows part of the network with the associated RDVT for
each node. For brevity, only one of the three filters is shown here.
Each element in the filter is associated with a distance number:
the minimum distance to a matching resource. The first row of
the RDVT is the local filter containing local resource index. For
example, node A’s local filter contains a local resource a, which is
mapped to two positions (2, 4) in the filter. We set the distance
number of a local resource as 0. The rest of the rows represent
resources accessible from neighbors. For example, in Fig. 4(a), A’s
second row contains resources that can be reached through the
neighbor B (e.g., resource b(4, 0) with 1 hop).

When a node joins the cluster, it should construct its routing
table, RDVT. Neighbors of this new node should update their
RDVTs to reflect the joining of this new node. Fig. 4 illustrates the
RDVT updating process when a new node C joins the network.
Node C joins the network by connecting to an existing node
A in the network. After the connection is established, node C
sends its resource indices to A. Similarly, A should inform C of
all the resources A has knowledge of. Specifically, A merges its
local and neighbor vectors into one vector and sends it to C.
The merged vector of A represents resources accessible from A
and their shortest distances to A. The merging process guarantees
that the nearer resource information always gets higher priority
in the filter, because a position occupied by a nearer resource
would never be overwritten by a further resource. This property
in turn guarantees that increasing radius will not bring more false
positives for a limited sized triple filter, which will be proved by our
experiments as well. A does not need to send more information as

a

—_—] N

01234567
Cl-]0]~[~]~[~]-]0]

-
-

Al1[~[o[~[0]~]~[~]

01234567
b B[0o[~[~[~[~[~[~]0
Al~[2|1|~|1]|~]|~]|2
5 7
1~~~

>(17)
45 67
~[~]~]0
1~~~

Fig. 4. Construction of the routing table.

C does not need to know the precise location of these resources,
but only that they can be accessed through A. After C receives the
merged vector from A, it adds 1 hop to each element of the vector,
and adds an additional row in its RDVT (as shown in Fig. 4 (b)). After
A receives C’s resource information and updates its routing table,
it informs its neighbors (in this case, node B) of the update. In this
way, nodes can construct and update their RDVTs.

A node’s routing table should be updated when the resource
information changes. When new resources are added to a node,
this node calculates the changed positions in its own filter (1st
row in its routing table) and the merged filter. It then sends
these positions out to each neighbor. The deleting process is
more complex. Because of the overlapping of different resources,
deleting cannot be performed by simply setting the related
hash positions to infinity. We can solve the problem by using
the counting Bloom filter proposed by Fan et al. [9], or using
the timing-based deletion approach [10]. A resource update can
be implemented as a deletion followed by an addition. Each
node sends updates to and receives updates from its directly
connected neighbors. To reduce the overhead of transmitting
routing information, a soft-state update mechanism is used, in
which routing information is exchanged periodically.

4.3. Query forwarding

Based on the routing table RDVT, we propose a so-called
resource-distance-vector (RDV) routing algorithm. It uses a dis-
tance vector approach to route the query to the nearest matching
nodes. The traditional distance vector approach is not scalable for
locating unique nodes in a large network, but this modified version
is extremely well suited for our resource discovery problem.

When a node receives a query, it converts the query into a
triple sequence and matches the sequence in the RDVT. Besides
matching local resources, the query is also forwarded to the “right”

J. Li / Future Generation Computer Systems 26 (2010) 361-373 367

Q: ¢
C
2 34 A
A 0[~[0 D
B ~[~|1 E
Cl~1)3]2/3 12345
D|~|1]3]3|3|1|3|2 D|~|0]~|~[~[O[~|~
Al2(2]1]3]1]3|3|2
C[3|1(2[2]2[3]|2]|1

Fig. 5. RDV query routing.

neighbors. A query may be transferred several hops until arriving
at the matching node or the query TTL expires. Fig. 5 illustrates
a query routing example. We only show one of the three triple
vectors. For simplicity, the query has only one constraint. The
radius is set to 3, so nodes are only aware of resources within
3 hops. In this example, node A receives a query for resource e
(which is mapped to two positions: 3 and 6 in the filter). It checks
its routing table and finds two matches: through C with 2 hops
(C3 = 2, Cs = 2) and through D with 3 hops (D3 = 3,Dg = 3).
Since the shortest distance to the resource is 2 through neighbor
C, the query is forwarded to C. Similarly, C forwards the query to
E. E finds a match in its local vector, and then it checks the RDF
database against the original query.

Our routing algorithm works fine with networks containing
cycles. Because of cycles, a node may receive a query multiple
times. To avoid processing queries more than once, every query has
a unique query ID and every node keeps a list of recently received
query IDs. If a query has been received before, it will be discarded.
Another benefit of recording the query is that it ensures the query
does not hit the same false positive twice.

4.4. Heuristic jump and caching

By setting a radius, we limit the distance a node’s resource
information can travel. This reduces false positives, but at the
same time, this causes a node not to have global knowledge of the
network but have only a local view of the neighborhood. Because
of this, a node may not find enough matches from its RDVT to
forward queries. A naive solution is to forward the query to some
random neighbors even if they have no match hoping that these
neighbors can find matches from their neighborhood. This method
is inefficient since a node’s neighbor has a neighborhood which
largely overlaps its own. If the requested resources are scarce in
the local area, forwarding the query to another neighbor in this
area will not substantially increase the chance of resolving a query.
To address this problem, we introduce a forwarding method called
the “heuristic jump.”

This method allows the system to keep additional long-distance
links as an addendum to the RDVT. When the RDVT cannot resolve
the query, the query will “jump” to remote nodes the links point
to. To discover these long-distance links, the system employs
an aggressive caching technique. After finding the result of a
query, the result travels along the reverse path to the requester.
Whenever it is passed through a node, it is cached in that location.
Every internal node caches the query, the destination node, and
the distance to that node. We use caching to not only eliminate the
need to forward a query which may be resolved locally, but also to
use this cached information as links for future long-distance jumps.

During the query-forwarding process, when a node cannot find
enough matches in its routing table, it chooses appropriate long-
distance links from its cache and forwards the query accordingly.
This expedites the searching process by jumping over barren
areas. Candidate long-distance nodes should be located outside the
neighborhood area; i.e., the distance should be greater than radius.
In our heuristic, we also consider other metrics. For example,
the query might “jump” to nodes that answered more previous
queries, or to nodes that answered similar queries.

4.5. False positive

RDV routing assumes if all three parts of a triple can be found
in the triple filter, then the query can be satisfied by the filter.
However, this conjecture may be false, because (1) the Bloom filter
structure itself contains false positive; (2) even when all parts of a
triple are found in the filter, these parts may belong to different
resource instances. We argue that these false positives do not
dramatically deteriorate the system’s performance or affect the
system’s fidelity. This is because of the following reasons: (1) The
inherent false positive of Bloom filter is (1 — —e*"/™)k where
k is the number of independent hash functions used and m is
the size of the filter. As shown in [21], this is trivial and can be
ignored when k and m are chosen properly. (2) Users pose queries
according to their need and common sense, rather than randomly
picking terms from the three domains of the triple. Therefore,
aggregation of resource information would not cause too much
false in reality. If aggregation does cause false positives, these false
positives will reveal themselves after several hops. Moreover, all
queries will finally be evaluated at the local resource database,
therefore the false positive will not affect the system fidelity. We
try to control the false positives caused by the aggregation of
resource information with a set of strategies. First we try to reduce
the degree of resource aggregation by limiting the resources to
be stored in the triple filter to those belonging to 0-neighbors of
the node only. Moreover, we also set radius to further limit the
aggregation. Our experiments illustrate that false positives do not
significantly deteriorate the system’s performance.

5. Experiment

In this section, we will explain the experiment setup, and then
present the simulation results.

5.1. Setup

As it is difficult to find representative real world ontology data,
we have chosen to generate test data artificially. Our data does
not claim to model real data, but shall rather provide reasonable
approximation to evaluate the performance of the system. We
use a dictionary as the vocabulary source of ontological data.
The overlapping of ontologies can be controlled by adjusting
the dictionary size: When the vocabulary size is smaller, the
ontologies created have a higher degree of overlapping, and vice
versa. Ontology data can be characterized by many factors such as
the number of classes, properties, and individuals; thus we have
generated the test data in multiple steps. The algorithm starts
with generating the ontology schema. Each schema includes the
definition of a number of classes and properties. The classes and
properties may form a multilevel hierarchy. Then the classes are
instantiated by creating a number of individuals of the classes. To
generate an RDF instance triple t, we first randomly choose an
instance of a class C among the classes to be the subject: sub(t).
A property p of C is chosen as the predicate pre(t), and a value from
the range of p to be the object: obj(t). If the range of the selected

368 J. Li / Future Generation Computer Systems 26 (2010) 361-373

property p are instances of a class C’, then obj(t)is a resource;
otherwise, it is a literal.

We assume each node uses 1 to 3 ontologies. Each ontology
includes at most 10 classes. The number of properties that each
class has is at most k = 3. The number of instances of each class
at each peer is less than 10. Finally, the number of triple patterns
in each query we create is either 1 or 3. In our experiment, we do
not do knowledge reasoning. In other words, we do not augment
the RDF graph by inference (forward chaining). We assume for
simulation purposes that ontologies and queries are associated
with a specific domain, and all ontologies in the same domain have
ontology mappings defined in advance.

The queries are generated by randomly replacing parts of
the created triples with variables. For our experiments, we use
single-triple-queries and conjunctive-triple-queries. To create the
conjunctive-queries, we randomly choose a property p; of class C;.
Property p; leads us to a class C; which is the range of p;. Then
we randomly choose a property p, of class C,. This procedure is
repeated until the range or the property is a literal value or we have
created n (n < 3) triple patterns.

The simulation is initialized by injecting nodes one by one
into the network until a certain network size has been reached.
The network topology created this way has power-law properties;
nodes inserted earlier have more links than those inserted later.
This property is consistent with the real world situation, in which
nodes with longer session time have more neighbors. After the
initial topology is created, a mixture of joins, leaves, and queries are
injected into the network based on certain ratios. The proportion of
join to leave operations is kept the same to maintain the network
at approximately the same size. Inserted nodes start functioning
without any prior knowledge.

For comparisons, we simulate our searching scheme OntoSum
in conjunction with the learning-based ShortCut scheme [22] and
a random-walk based simple Gnutella scheme [23]. The ShortCut
approach is chosen as one comparison reference since it is simple
yet effective, and many popular applications (e.g., [22,24-26])
use this approach as their basic routing scheme. Moreover, it is
comparable to our approach in the sense that it creates clusters on
top of the unstructured network. The ShortCut approach relies on
the presence of interest-based locality to create “shortcuts”. Each
peer builds a shortcut list of nodes that answered previous queries.
To find content, a peer first queries the nodes on its shortcut
list and only if unsuccessful, floods the query. This approach
presents a promising reorganization method within unstructured
P2P networks. Flooding-based Gnutella was chosen as another
reference approach for its simplicity and prevalence, which, in
fact, made it a widely used baseline for many previous research
efforts. We tested two versions of OntoSum, OntoSum_0O and
OntoSum_1. The former has no intra-cluster RDV routing table
and uses random-walk to forward queries inside the cluster; while
the latter uses the RDV routing scheme (with radius 1) to forward
queries inside a cluster. The reason to use 1 as the value of radius in
this experiment is to save memory storage to support large-scale
test. When radius is 1, the RDV table does not need to maintain
distance information and it is simplified as a Bloom filter bitmap.
We use the function defined in Eq. (1) to measure the semantic
similarity between OntoSum peers. We set the default similarity
threshold t as 0.6.

The resource-discovery query is propagated exponentially,
i.e.,, each node chooses a certain number of neighbors (called
walkers) to forward the query. The neighbor-discovery query (for
OntoSum only) is propagated linearly, i.e., only the node that issues
the query forwards the query to a certain number of walkers, while
all other nodes only forward the query to one neighbor. In the
rest of the paper, we use the term “query” to refer to resource-
discovery query.

The simulation parameters and their default values are listed in
Table 1.

Table 1

Parameters used in the simulations.

Parameter Range and default value

Network size 29 ~ 215 default: 10,000

Initial neighbors (node degree) 5

Maximum neighbors 30

Average node degree 14

TTL 1 ~ 20 default 9

Resource-discovery query walkers
Neighbor-discovery query walkers
Ontology domains

Ontology schemas per domain

3 (propagate exponentially)
2 (propagate lineally)

1 ~ 10 default: 8

1 ~ 10 default:8

Distinct resources per domain 100

Resources per node 1~10

RDV table radius 1

Die/leave probability per time slice 0%-21%, 3% default

per node
Resource change probability per
time slice per node

20%instance update, 2% schema update

Query probability per time slice 5%
per node
RDVT update frequency every 5 time slices
Sample of nodes to compute 5%
diameter
5.2. Results

In this part, we present the experimental results which
demonstrate the performance of our searching scheme.

5.2.1. Emergence of the small-world

As discussed, the topology of the peer network is a crucial factor
determining the efficiency of the search system. We expect that the
OntoSum semantic neighbor discovery scheme will transform the
topology into a small-world network. To verify this transformation,
we examine two network statistics, the clustering coefficient and
the average network path length, as indicators of how closely the
topology has approached a “small-world” topology.

The clustering coefficient (CC) is a measure of how well
connected a node’s neighbors are with each other. According to one
commonly used formula for computing the clustering coefficient of
a graph Eq. (2), the clustering coefficient of a node is the ratio of the
number of existing edges and the maximum number of possible
edges connecting its neighbors. The average over all |V| nodes gives
the cluttering coefficient of a graph Eq. (3).

cc # of edges between v’s neighbors 2)
V=
maximum # of possible edges between v’s neighbors

1
cC = T ZCCU. (3)
v

The average path length (APL) is defined as the average shortest
path across all pairs of nodes Eq. (4). The APL corresponds to the
degree of separation between peers. For a large graph, measuring
distances between all node pairs is computationally expensive;
therefore an accepted procedure is to measure it over a random
sample of nodes [27]. In our experiment, we use a random sample
of certain percent of the graph nodes. We use Dijkstra’s algorithm
to compute the shortest distance between pairs of nodes. In our
simulated topology we intentionally make the network strongly
connected, so that any pair of nodes has a directed path.

o il
VI- (vl =1)

We performed experiments to measure OntoSum’s cluster
coefficient (CC) and average path length (APL). An interest-based

ShortCut topology and a random power-law topology with the
same average node degree are used as reference topologies. The

(4)

J. Li / Future Generation Computer Systems 26 (2010) 361-373 369

—&— OntoSum —m— ShortCut Random

e —
. 1'5 = '\
8 ;).1 \
0.05 \'\
[$

O T [i
16384 32768

T T I "
512 1024 2048 4096 8192
Number of nodes

Fig. 6. Comparison of clustering coefficient.

—&— OntoSum

—=&— ShortCut Random

2 ‘ ‘ ‘ : :
512 1024 2048 4096 8192 16384

Number of nodes

32768

Fig. 7. Comparison of average path length.

former has been proved to be a small-world system [28]. For
the ShortCut scheme, test results are collected after the system
has had an extensive training process, i.e., nodes have learned as
many ShortCuts as possible through query results and the system
topology has become stable.

Figs. 6 and 7 show plots of the clustering coefficient and the
average path length as a function of the number of nodes in
the network. We observe that both the clustering coefficient and
the average path length of OntoSum are very similar to those of
ShortCut. The clustering coefficients of OntoSum and ShortCut are
much larger than that of the random power-law network, while the
average path length of OntoSum and ShortCut are almost the same
as that of the random network. This indicates the emergence of a
small-world network topology [27]. Note: Because all of the three
topologies are created by inserting nodes to the existing system,
all topologies show the power-law property to some extent, and
thus the average path length of all three topologies are smaller
than a random network. This set of experiments verifies that
firstly, well connected clusters exist in the OntoSum system; due
to the semantic similarity definition, these clusters correspond to
groups of users with shared ontological interests. Secondly, there
is, on average, a short path between any two nodes in the system
topology graph; therefore, queries with relatively small TTL would
cover most of the network. Our later simulation experiments will
verify this.

5.2.2. Scalability and efficiency

We examine the system performance in three different
aspects, namely routing scalability, efficiency, and accuracy by
executing the experiment in different network configurations. The
performance is measured using the metric of recall rate, which is
defined as the number of results returned divided by the number
of results actually available in the network. To simulate dynamic
factors, in each time slice every node has a 5% probability to issue
a query, and a 2% probability to leave the system. The probability
of new nodes with new resources joining the system is the same as
the probability of a node leaving.

First, we vary the number of nodes from 2° to 2'° to test the
scalability of the routing scheme. The results are listed in Fig. 8. As
we expected, both versions of OntoSum get higher recall in all these

—&— OntoSum_1 —#— OntoSum_0 ShortCut RandomWalk

1
0_8#‘5%

1
0.6-

0.4 \T
|

recall

0.2
O T T T T T
512 1024 2048 4096 8192 16384 32768
Number of nodes
Fig. 8. Recall rate vs. network size.
—&— OntoSum_1 —&— OntoSum_0 ShortCut RandomWalk
1
08 " o * i——‘—_ﬁ
3 06 //;;/.—/‘/- :
2 04 k-
0.2 é‘/
O ;‘ T T T T T T T T
1 2 3 4 5 6 7 8 9 10
TTL
Fig. 9. Recall rate vs. TTL (with # walkers = 3).
—&— OntoSum_1 —#— OntoSum_0 ShortCut RandomWalk
1 .
0.8 . —
= 06 ;'///'/ —
o
[}
< 04 %
02 4»/
0 '."/ T T T T T
1 2 3 4 5 6 7

Number of walkers

Fig. 10. Recall rate vs. walkers (with TTL = 5).

different sized networks. In addition, OntoSum’s recall decreases
less with the increase in network size. Fig. 9 illustrates the system
efficiency by showing the relationship between query recall rate
and query TTL. With a small TTL, OntoSum gets a higher recall rate
than the other two algorithms. This means that OntoSum resolves
queries faster than the others. In Fig. 10 we show the effect of
dispatching a different number of walkers to search the network.
We can see that with the same TTL, OntoSum locates more results
with fewer walkers. This indicates that OntoSum routing is more
accurate and can always find the right node to forward the query to.

As expected, our OntoSum searching scheme performs well
as measured by the recall rate. OntoSum'’s small-world topology
effectively reduces the search space, and its ontology summary
guides the query in the right direction. Therefore, OntoSum can
locate results faster and more accurately. This explains why
OntoSum scales to large network size and why it achieves higher
recall with shorter TTL and fewer walkers. Besides all these
reasons, another factor contributing OntoSum’s overall better
recall rate is that OntoSum is able to locate semantically related
results that cannot be located by the ShortCut and random-walk.
Because of the semantic heterogeneity of our experimental setup,
relevant resources may be represented with different ontologies.
OntoSum may use its ontology signature set to find semantically
related nodes and use the mapping defined to translate the
query. Therefore, it can locate most of the relevant results.
However, for ShortCut and random-walk, they have no way to
find semantically related resources. Therefore, they can only locate
resources represented in the same ontology as the ontology of the
querying node.

370 J. Li / Future Generation Computer Systems 26 (2010) 361-373

—— OntoSum_1 —#— OntoSum_0
1

0.8 =

0.6 +—

0.2 \\”\”

0 T T T T T T 1
0 3 6 9 12 15 18 21

die/leave possibility (%) per node per time slice

ShortCut RandomWalk

recall

Fig. 11. Recall vs. churn rate.

5.2.3. Overhead and adaptability to dynamics

The good recall performance of OntoSum does not come for free.
Generally speaking, the more efficient the query searching is, the
more the system has to pay for maintaining the system structure or
indexing the resource information, i.e., there is a tradeoff between
query efficiency and maintenance overhead. Unlike ShortCut and
random-walk approaches, which only create query propagating
overhead, OntoSum also creates overhead for maintaining the
inter-cluster and intra-cluster routing table. We expect the extra
overhead is reasonable and the saving from query cost exceeds the
extra maintenance cost. To verify this, we examine the system’s
overhead in terms of accumulated bandwidth and compare it
with that of ShortCut and random-walk. System overhead has
a close relation with the system dynamics, as a system must
maintain consistent information about peers in the system in order
to operate most effectively. Therefore, we measure the system
dynamics together with the overhead. To evaluate the adaptability
to different levels of dynamics, we measure the system overhead
under different levels of peer “churn rate” and “update rate”,
referring to the rate of peers leaving/joining the system and the
rate of resource updates. Experiments in this section are performed
on a 10,000-node network. The churn rate is represented as the
probability for a node to die/leave the system in unit time slice; to
maintain the constant number of network size we also insert an
equal number of new nodes into the system. The update rate is the
probability for a node to update its resource information in a time
slice.

The experiment shown in Fig. 11 gives an overview of how
dynamics affect the system performance. Specifically, it shows the
query recall rate under different dynamic configurations. In the
experiment, we increase the dynamics by increasing the churn
rate. From the figure, we find that OntoSum performs similarly
to the ShortCut algorithm which is proved to be resilient to
churn [22]. When peers join or leave frequently, the performance
of ShortCut and OntoSum deteriorate gracefully. Churn does not
affect the two schemes dramatically because both algorithms do
not depend on a strict structure to perform routing as DHTs do.
Their unstructured random topologies provide multiple routes to a
destination thus increasing the system resilience. In the worst case,
they degrade to random-walk. Another observation is that when
the system is more dynamic, OntoSum_1 degrades to OntoSum_0.
This is easy to understand because when the system is more
dynamic, the resource information in the RDV table is not accurate.
In the worst case, using the RDV table to forward the query is like
randomly choosing a neighbor to forward to.

Fig. 12 shows the accumulated bandwidth overhead of finding
10000 results under different churn rates. We use a soft state ap-
proach to update the routing table: the routing table is updated pe-
riodically instead of in real time. From the figure, we can see that
in most situations OntoSum produces much less overhead then the
other two methods, and that OntoSum_1 is even better than Onto-
Sum_0. But when the system is very dynamic, such as when the

—&— OntoSum_1 —#— OntoSum_0
30
25
20 2
15
10 =

5

0 — s T T T
0 3 6 9 12 15 18 21

die/leave possibility per time slice per node

ShortCut RandomWalk

accumulated bandwidth
(bytes per time slice) in Millions

Fig. 12. System overhead vs. churn rate.

dying probability is beyond 20%, OntoSum produces much more
overhead. When the system is very dynamic, the neighborhood re-
lationship changes frequently, and OntoSum creates great amounts
of overhead maintaining its routing table. Even worse, the over-
whelming maintenance overhead does not bring much benefit in
this situation, because the newly constructed topology will change
quickly. Luckily, churn of the nature described above rarely hap-
pensinreality [29], and we can see from Fig. 12 that with this churn
rate, ShortCut degrades to random-walk. The high overhead prob-
lem of OntoSum in very dynamic environments can be solved by
a simple solution: when the network is very dynamic, the system
can give up the ontology-based topology construction and routing
and resort to basic Gnutella random-walk as a solution.

With the same configuration as the experiment in Fig. 12, Fig. 13
illustrates the overhead composition of each routing approach.
Most of the overhead of ShortCut and random-walk is caused
by query forwarding, and a little overhead is caused by finding
neighbors when new nodes are inserted into the system. For
OntoSum, the neighbor discovery overhead accounts for a higher
proportion of the overhead when the system is more dynamic.

We also performed a set of experiments to evaluate the system
overhead under various resource update rates. The resource
update rate is represented by the probability of a resource change
per node per time slice. There are two types of updates: one
is called instance update and the other is called the ontology
(schema) update. In an instance update, a node keeps its original
ontology schema and only updates instances of that ontology. In
this case, each node changes 20% of its resources per update. An
ontology update, on the other hand, changes the ontology schema
and of course all the related instances. This kind of change is
a dramatic change: it means that the node totally changes its
interest, and the practical effect is the same as inserting a new
node. The rate of these two types of changes is set to 10:1. The RDV
routing table is updated periodically every five time slices in the
simulation.

Fig. 14 illustrates the relationship between system overhead
and resource update frequency. It is clear that the rate of resource
updates has a bigger impact on OntoSum_1 than on the other al-
gorithms. Because OntoSum_1 has to update its RDV routing ta-
ble to reflect the changing resources, this unavoidably causes more
overhead when resource update is frequent. When the resource
update is so frequent that the routing table update cannot catch
up to the resource update, the information in the routing table
cannot represent the real resource distribution, and maintaining
the routing table becomes useless. Therefore, in a very dynamic
environment, we recommend the system stop intra-cluster rout-
ing table updates, and turn to OntoSum_0 as the routing scheme.
Because most of the resource updates are instance-level updates,
OntoSum_0 and ShortCut do not need to change their neighbor-
hood too much, and consequently they do not see much overhead.
If there are more ontology-level updates, it is like inserting more
new nodes, and the result would be similar to the result shown in
Fig. 12. Fig. 15 illustrates the overhead composition of OntoSum_1

J. Li / Future Generation Computer Systems 26 (2010) 361-373 371

@ query @ neighbor discovery

100%

50% 1+

0%

overhead composition

0 3 | 6 9 12 15 18 21
die/leave possibility per time slice per node

=

OntoSum_0 overhead composition.

c O query @ neighbor discovery

:f_,:) 100%

§ 80% T 1 1 [

§ 60% T 1 1 [

o

o 40% 1 — 1

(]

_QE) 20% T 1 1

2 0%

o 0 3 6 9 12 15 18 21

die/leave possibility per time slice per node
(c) Shortcut overhead composition.

c @ query W\ neighbor discovery O RDV update

£ 100%

%]

8 80% 1

E 60% 1

o

© 400/0 T |

8 0,

2 20% +—

2 0% T T '

o 0 3 6 9 12 15 18 21
die/leave possiblility per time slice per node

(b) OntoSum_1 overhead composition.

c O query @ neighbor discovery

S 100%

8 80% 114 1 1 1 —

Q.

g 60% T —1 1 1 [

o

- 40% 1 —1 —1 —1

(]

g 20% 11 —1 —1 —1 —

2 0% ‘

° 0 3 6 9 12 15 18 21

die/leave possibility per time slice per node

(d) Random-walk overhead composition.

Fig. 13. Overhead composition vs. churn rate.

—&— OntoSum_1 —&— OntoSum_0 ShortCut RandomWalk
2
2 12

s< !

=10

£ 8

2=

g8

o® 6

Q

§.§ 4 ‘4/4——"’

gL 2 o

o » O T T T T T T T 1

© ﬂi 0 5 10 15 20 25 30 35
o

resource update possibility per time slice per node

Fig. 14. System overhead vs. resource update rate.

and Onto_Sum_0. Because resource changes do not affect Short-cut
and random-walk much, we do not plot their results.

We should understand that the overhead is application
dependent. It depends on the quantity of resources, the routing
table update rate, as well as factors like the compression rate of
RDV routing table. In our experiments our resource size is between
10 to 200 instances per node. We set OntoSum’s RDV routing
radius as 1, which means that inter-cluster routing tables are only
exchanged between direct neighbors. We do not compress the
RDV table during transferring. If a system has more resources than
this configuration, the system will see more overhead and vice
versa. We can see there is a tradeoff between query efficiency
and indexing overhead. The application should choose a suitable
OntoSum version for its particular purpose.

6. Related work

This section gives an overview of technologies and research
related to this paper.

c @ query B neighbor discovery
£ 100%

0

S 80% 71 —

5 60%7 —

o

o 40%1 —

1]

2 20%1 —

e 0% T

° 0 5 10 15 20 25 30 35

resoruce update possibility per time slice per node

(a) OntoSum_0 overhead composition.

Semantic Web and Semantic Link Network

Proposed by Tim Berners-Lee, inventor of the Web and HTML,
the Semantic Web is an evolving extension of the World Wide
Web (WWW) in which Web content can be expressed not only in
natural language, but also in a format that can be read and used by
software agents, thus permitting them to find, share and integrate
information more easily. Applications have used the standard
RDF language [11] to describe data. Ontology languages, such as
DAML+OIL [11] and OWL [12] built on top of RDF, allow describing
relations between resources, thus defining a more abstract and
expressive resource sharing environment. The Semantic Link
Network [6,7,30-32] was proposed by Zhuge et al. as a semantic
data model for organizing various web resources. It extends the
web’s hyperlink to semantic link which links various resources and
knowledge and helps humans to understand, learn and discover in
the world. SLN has been used to improve the efficiency of query
routing in P2P network [13], and it has been adopted as one of
the major mechanisms of organizing resources for the knowledge
grid [33]. Our proposed system, OntoSum, was inspired by the
Semantic Web and the SLN technologies. It harnessed the power of
these technologies to aid in resource information representation,
retrieval and aggregation over large distributed grids. Therefore,
these two technologies are the foundation of OntoSum.

P2P-based semantic search

P2P technology has been used to improve the scalability and
efficiency of the semantic searching.

Edutella [34] is a P2P network for searching semantic web
metadata. Each Edutella peer can make its metadata information
available as a set of RDF statements. The distributed individual
RDF peers register the queries they may be asked through the

@ query @ neighbor discovery O RDV update

c

£ 100%

3 80% 1 | - 1 — —d
o o

§ 60% 1 |—]
- 40% | [| AN [) IS N
8 20% =

2 bl |] RN
e 0% ‘ = =
°© 0 5 10 15 20 25 30 35

resoruce update possibility per time slice per node

(b) OntoSum_1 overhead composition.

Fig. 15. Overhead composition vs. resource update rate.

372 J. Li / Future Generation Computer Systems 26 (2010) 361-373

query service, and queries are sent through the Edutella network
to the subset of peers who have registered with the service to
be interested in this kind of query. To forward queries between
nodes, Edutella uses JXTA to broadcast queries to a HyperCup
topology. Similarly InforQuilt [35] and Piazza [36] also uses
broadcast/flooding to search semantic metadata. The simple P2P
broadcast structure used by these systems makes them very
difficult to scale to large-scale networks. Our system solves this
problem by topology adaptation and semantics-based routing.

Projects, such as RDFPeer [37] and OntoGrid [38], attempt
applying DHT techniques to the retrieval of the ontology encoded
knowledge. The basic idea is to map each keyword of a semantic
entity to a key. For example, RDFPeer [37] indexes each RDF
triple to support semantic RDF query. A query with multiple
keywords then uses the DHT to lookup each keyword and returns
the intersection. However, DHTs have difficulty in supporting
other semantically richer queries, such as wildcard queries, fuzzy
queries, and proximity queries. In addition, most DHT-based
applications require all peers in the system sharing a uniform
ontology schema, which is impractical in reality. These limitations
restrict the deployment of DHTs to semantic data discovery.
Like DHT-based approaches, our OntoSum system resolves the
scalability issue; but unlike DHTs that cannot support complex
queries, our system has no limitation for query format and can
support arbitrary types of queries.

Semantic clustering

Recently, there has appeared the idea of grouping nodes
with similar contents together to facilitate searching [39-42].
The latest super-peer-based Edutella [41] and Semantic Overlay
Network (SON) [43] rely on centralized server or super-peers
to cluster contents and nodes. However, super-peers may be
potential bottlenecks of the system, and efficient communication
mechanism between super-peers is absent in these systems.
Preliminary work in [40] proposes to cluster nodes with similar
interest together, without discussing how to define the interest
similarity amongst peers and how to form clusters. [42] relies
on periodic message exchanges amongst peers to keep track
of other peers with similar documents, which incurs very high
message overhead. Semantic Small Word (SSW) positions peers
and data objects in the semantic space, so that peers with similar
data objects form into clusters. It then applies a dimension
reduction technique on top of the DHT to realize a semantics-
based search. In SSW, semantics of data objects is represented
by a multi-attribute vector, but not Semantic Web-based data.
Applications such as REMINDIN [22], Helios [25], and Bibster [26]
add semantic short-cuts to group nodes. The short-cut approach
relies on the presence of interest-based locality. Each peer builds
a shortcut list of nodes that answered previous queries. To
find content, a peer first queries the nodes on its shortcut
list and only if unsuccessful, floods the query. Similar to these
systems, our OntoSum system uses semantic clustering to organize
the network topology and reduce search space to semantically
related clusters. Unlike the super-peer approaches, OntoSum uses
a fully-decentralized approach which automatically forms the
semantic group, thus avoiding the bottleneck problem. Compared
with SSW, OntoSum supports complex semantic web data, not
just multi-attribute data. Compared with short-cut approaches,
OntoSum dramatically outperforms them in accuracy, scalability
and efficiency, as illustrated by our simulation experiments.

7. Summary

In this paper, we presented an effective framework, OntoSum,
for resource discovery in a large-scale heterogeneous grid. In
OntoSum, grid nodes automatically organize themselves based on
their semantic properties to form a semantically-linked overlay

network. A semantics-based routing algorithm, RDV, is proposed to
enable efficient information retrieval within semantically related
small-worlds. We evaluated the performance of our system with
extensive simulation experiments, the results of which confirmed
the effectiveness of the design in scalability, efficiency, robustness,
and overhead.

References

[1] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, Grid information services
for distributed resource sharing, in: Proceedings 10th IEEE International
Symposium on High Performance Distributed Computing, HPDC-10’01, 2001,
pp. 181-194.

[2] H. Casanova, Distributed computing research issues in grid, computing,
typescript, Univ. of California, San Diego, 33 (3) (2002) 50-70.

[3] Globus Toolkit: http://www.globus.org/toolkit/.

[4] M. Cai, M. Frank, J. Chen, P. Szekely, MAAN: A multi-attribute addressable
network for grid information services, in: The 4th International Workshop on
Grid Computing, 2003, pp. 184-191.

[5] A. lIamnitchi, I. Foster, On fully decentralized resource discovery in grid
environments, in: Proceeding of the 2nd IEEE/ACM International Workshop
on Grid Computing 2001, Denver, 2001, pp. 51-62.

[6] H. Zhuge, Ruixiang Jia, Jie Liu, Semantic link network builder and intelligent
semantic browser, Concurrency - Practice and Experience 16 (14) (2004)
1453-1476.

[7] H. Zhuge, Yunchuan Sun, Ruixiang Jia, Jie Liu, Algebra model and experiment
for semantic link network, I[JHPCN 3 (4) (2005) 227-238.

[8] A.L. Barabasi, Linked: How everything is connected to everything else and
what it means for business, science, and everyday life, New York, Plume, 2003.

[9] J. Kleinberg, Navigation in a small world, Nature 406 (2000) 845.

[10] W.A. Gruver,].C. Boudreaux, Intelligent Manufacturing: Programming Envi-
ronments for CIM, Springer-Verlag, London, 1993.

[11] O. Lassila, Ralph R. Swick, W3C Resource Description framework (RDF) Model
and Syntax Specification, World Wide Web Consortium, 1999.

[12] OWL Web Ontology Language Overview. W3C Recommendation 10 February
2004 http://www.w3.0rg/TR/owl-features/.

[13] H. Zhuge, Jie Liu, Liang Feng, Chao He, Semantic-based query routing and
heterogeneous data integration in peer-to-peer semantic link networks, in:
ICSNW, 2004, pp. 91-107.

[14]]. Jiang, D. Conrath, Semantic similarity based on corpus statistics and
lexical taxonomy, in: Proceeding of the Int'l Conf. Computational Linguistics
(ROCLING X), Vol. cmp-1g/9709008, 1997.

[15] J. Lee, M. Kim, Y. Lee, Information retrieval based on conceptual distance in
IS-A hierarchies, Journal of Documentation 49 (1993) 188-207.

[16] M.A.Rodriguez, M.J. Egenhofer, Determining semantic similarity among entity
classes from different ontologies, IEEE Transactions on Knowledge and Data
Engineering 15 (2) (2003) 442-456.

[17] G.A. Miller, R. Beckwith, C. Fellbaum, D. Gross, KJ. Miller, Introduction to
WordNet: An on-line lexical database, International Journal of Lexicography
3(4)(1990) 235-244.

[18] A.Tversky, Features of similarity, Psychological Review 84 (4) (1977) 327-352.

[19] D. Lin, An information-theoretic definition of similarity, in: Proceeding of the
15th International Conf. on Machine Learning, San Francisco, CA, 1998, pp.
296-304.

[20] College of American Pathologists. "SNOMED RT - Systematized Nomenclature
of Medicine Reference Terminology,” VERSION 1.1, USER GUIDE, 2001.

[21] B. Bloom, Space/time tradeoffs in hash coding with allowable errors,
Communications of the ACM 13 (7) (1970) 422-426.

[22] X. Tempich, S. Staab, A. Wranik, REMINDIN’: semantic query routing in peer-
to-peer networks based on social metaphors International World Wide Web
Conference (WWW), New York, USA, 2004, pp. 640-649.

[23] Gnutella website. http://gnutella.wego.com/.

[24] K. Sripanidkulchai, B. Maggs, H. Zhang, Efficient content location using
interest-based locality in peer-to-peer systems, in: Proceedings of the
INFOCOM'03, 2003.

[25] S. Castano, A. Ferrara, Montanelli, D. Zucchelli, Helios: A general framework
for ontology-based knowledge sharing and evolution in P2P systems, in: IEEE
Proc. of DEXA WEBS 2003 Workshop, Prague, Czech Republic, 1(5), 2003, pp.
597-603.

[26] S. Castano, A. Ferrara, S. Montanelli, E. Pagani, G. Rossi, Ontology addressable
contents in P2P networks, in: Proceedings of the WWW’03 Workshop on
Semantics in Peer-to-Peer and Grid Computing, 2003, pp. 55-68.

[27] D.Watts, S. Strogatz, Collective dynamics of small-world networks, Nature 393
(1998) 440.

[28] C. Tang, Z. Xu, S. Dwarkadas, Peer-to-peer information retrieval using self-
organizing semantic overlay networks, in: Proceedings of 2003 Conference
on Applications, Technologies, Architectures and Protocols for Computer
Communications, 2003, pp. 175-186.

J. Li / Future Generation Computer Systems 26 (2010) 361-373 373

[29] D. Stutzbach, R. Rejaie, Understanding churn in peer-to-peer networks, in:
Proceeding of the Internet Measurement Conference, IMC, 2006, pp. 189-202.

[30] H. Zhuge, Communities and emerging semantics in semantic link network:
Discovery and learning, IEEE Transactions on Knowledge and Data Engineering
21(6)(2009) 785-799.

[31] H. Zhuge, X. Li, Peer-to-peer in metric space and semantic space, IEEE
Transactions on Knowledge and Data Engineering 6 (19) (2007) 759-771.

[32] H.Zhuge, Semantics, resource and grid, Future Generation Computer Systems
20 (1) (2004) 1-5.

[33] H. Zhuge, The Knowledge Grid, World Scientific Publishing Co., Singapore,
2004, 280 p.

[34] W.Nejdl, B. Wolf, C.Qu, S. Decker, M. SIntek, A. Naeve, M. Nilsson, M. Palmer, T.
Risch, Edutella: A P2P networking infrastructure based on RDF, in: Proceedings
of the WWW2002, May 7-11, Honolulu, Hawaii, USA, 2002, pp. 604-15.

[35] M. Arumugam, A. Sheth, LB. Arpinar, Towards peer-to-peer semantic web:
A distributed environment for sharing semantic knowledge on the web,
in: International World Wide Web Conference 2002, WWW2002, Honolulu,
Hawaii, USA, 2002.

[36] A. Halevy, Z. Ives,]. Madhavan, P. Mork, D. Suciu, The Piazza Peer Data
Management System, 16(7) (2004) 787-798.

[37] M. Cai, M. Frank, RDFPeers: A scalable distributed RDF repository based on
a structured peer-to-peer network, in: Proc. of WWW Conference, 2004, pp.
650-657.

[38] OntoGrid project: http://www.ontogrid.net/.

[39] M. Bawa, G.S. Manku, P. Raghavan, SETS: Search enhanced by topic
segmentation, in: Proceedings of ACM SIGIR, 2003, pp. 306-313.

[40] A.lamnitchi, M. Ripeanu, L.T. Foster, Locating data in (small-world?) peer-to-
peer scientific collaborations, in: Proceedings of International Workshop on
Peer-to-Peer Systems, IPTPS, 2002, pp. 232-241.

[41] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M.T. Schlosser, I. Brunkhorst,
A. Lser, Super-peer-based routing and clustering strategies for RDF-based
peer-to-peer networks, in: Proceedings of International World Wide Web
Conference, WWW, 2003, pp. 536-543.

[42] C.H. Ng, K.C. Sia, C.H. Chang, Advanced peer clustering and firework query
model in the peer-to-peer network, in: Proceedings of International World
Wide Web Conference, WWW, Poster ID S130, 2003.

[43] A. Crespo, H. Garcia-Molina, Semantic overlay networks for p2p systems.
Technical report, Stanford University, 2002.

Juan Li is an assistant professor in computer science at
North Dakota State University. She received her Ph.D.
degree in computer science from the University of British.
She also holds an M.S. degree in computer science from
the Chinese Academy of Sciences. Her main research
interests include P2P overlay network, grid computing,
and semantic web technologies.

