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Abstract 

Peer-to-peer (P2P) computing offers many attractive 

features, such as self-organization, load-balancing, 

availability, fault tolerance, and anonymity. However, it 

also faces some serious challenges. In this paper, we 

propose an Efficient Clustered Super-Peer P2P 

architecture (ECSP) to overcome the scalability and 

efficiency problems of existing unstructured P2P system. 

With ECSP, peers are grouped into clusters according to 

their topological proximity, and super-peers are selected 

from regular peers to act as cluster leaders and service 

providers. These super-peers are also connected to each 

other, forming a backbone overlay network operating as 

a distinct, yet integrated, application. To maintain the 

dynamically adaptive overlay network and to manage the 

routing on it, we propose an application level 

broadcasting protocol: Efa. Applying only a small 

amount of information about the topology of a network, 

Efa is as simple as flooding, a conventional method used 

in unstructured P2P systems. By eliminating many 

duplicated messages, Efa is much more efficient and 

scalable than flooding, and furthermore, it is completely 

decentralized and self-organized. Our experimental 

results prove that ESCP architecture, combined with the 

super-peer backbone protocol, can generate impressive 

levels of performance and scalability.  

1. Introduction 

In very large networks, it is not always easy to find 

desired resources. For any given system, the efficiency of 

any search technique depends on the needs of the 

application. Currently, there are two types of P2P lookup 

services widely used for decentralized P2P systems [2]: 

structured searching mechanism and unstructured 

searching mechanism. 

Structured systems such as Tapestry [6], Pastry [4], 

Chord [5], and CAN [3] are designed for applications 

running on well-organized networks, where availability 

and persistence can be guaranteed. In such systems, 

queries follow well-defined paths from a querying node 

to a destination node that holds the index entries 

pertaining to the query. These systems are scalable and 

efficient, and they guarantee that content can be located 

within a bounded number of hops. To achieve this 

performance level, the systems have to control data 

placement and topology tightly within their networks. 

However, this results in several limitations: first, they 

require stringent care in data placement and the 

deployment of network topology. Thus, the methods they 

use are not applicable to the typical Internet 

environment, where users are widely distributed and 

come from non-cooperating organizations. Second, these 

systems can only support search-by-identifiers and lack 

the flexibility of keyword searching, a useful operation 

for finding content without knowing the exact name of 

the object sought. Third, these systems offer only file 

level sharing, and do not share particular data from 

within the files.  

Unstructured systems like Gnutella [1] and FastTrack 

[7] are designed more specifically for the heterogeneous 

Internet environment, where the nodes’ persistence and 

availability are not guaranteed. Under these conditions, it 

is impossible to control data placement and to maintain 

strict constraints on network topology, as structured 

applications require. Currently, these systems are widely 

deployed in real life.  

The present paper focuses on building a P2P lookup 

application for integration into arbitrary dynamic 

networks that cannot be controlled. We thus concentrate 

on unstructured P2P systems, which support many 

desirable properties such as simplicity, robustness, low 

requirement for network topology and supporting 

keyword searching. Unstructured systems operate under a 

different set of constraints than those faced by techniques 

developed for structured systems. In unstructured 

systems, a query is answered by flooding the entire 

network and searching every node. Flooding on every 

request is clearly not scalable, and it has to be curtailed at 

some point, therefore it may fail to find content that is 

actually in the system. Furthermore, a network that uses 
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flooding might be bombarded with excess messages and 

activity, and at certain points it might fail. To address 

these problems, we propose a hierarchical structure and 

an efficient routing strategy.  

2. Multi-tier architecture 

In a network, participating peers exhibit considerable 

heterogeneity in terms of storage capacity, processing 

power, bandwidth and online availability. For the best 

design, we should take advantage of this heterogeneity 

and assign greater responsibility to the peers that are 

capable of handling it. ECSP utilizes these differences in 

a hierarchical P2P design, in which peers with different 

capabilities take different roles. Specifically, peers in the 

system act as client peers and super-peers in different 

hierarchies.  

Well-known registration servers
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SP2
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Figure 1: System architecture 
Figure 1 illustrates the hierarchical structure, in which 

peers are grouped together if they are topologically close. 

Peers with more resources in the cluster can be selected 

as a super-peer. Super-peers act as local search hubs, 

building indices of the content files shared by each peer 

connected to them, and proxying search requests on 

behalf of these peers. Desirable properties for super-peers 

include accessibility to other peers, bandwidth and 

processing capacity. Super-peers with these 

characteristics are connected with each other and 

organized amongst themselves into a backbone overlay 

network on the super-peer tier. Then, an application 

level broadcasting protocol is designed to perform 

distributed lookup services on top of this overlay 

network. A unique well-known registration server is 

responsible for maintaining user registrations, logging 

users into the system, and bootstrapping the peer 

discovery process. 

The hierarchical structure of this system combines 

advantages of both centralized and pure P2P systems. 

The introduction of a new level of hierarchy in the 

system increases the scale and speed of query lookup and 

forwarding processes. Moreover, the hierarchical 

structure is more stable because clusters join and leave 

the network less frequently than individual peers. Finally, 

our super-peer overlay routing protocol reduces the 

workload of super-peers significantly by avoiding many 

flooding duplications. 

2.1. Well-known server 
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Figure 2 Well-known registration server structure 

In the networks analyzed for the current study, well-

known registration servers (Figure 2) supply yellow page 

services to all nodes in a network. Registration servers 

maintain databases of all active super-peers in the 

system, and when a new super-peer is added to the 

network, a new entry is generated in the registration 

server’s super-peer database. Whenever a new peer joins 

the system, it first contacts the registration server to get a 

super-peer list. To provide scalability and load balancing, 

some hierarchical registration servers are essential, 

which contain replicas of the active registration server. 

Replica registration servers become active only when the 

main registration server is not able to provide service to 

nodes in the system, for example during busy periods or 

failing times. 

2.2. Super-peers 
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Figure Super-peer structure 
Super-peers are selected from regular peers according 

to their computing resources and bandwidth capabilities, 

the volume of files they store, and the behavior of being 

seldom offline. Super-peers act as cluster leaders and 
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service providers for a subset of client peers, providing 

four basic services to the clients: join, update, leave and 

query. 

In the join process, client peers upload metadata 

describing the property of the content they will share 

with the network. In addition, the super-peer also stores 

details related to the client peer’s connection, such as the 

IP address, bandwidth, and processing power of the 

client. After the join process is completed, the client peer 

is ready to query content in the network, and to allow 

other client peers to download content from it. When a 

client peer leaves the system, the super-peer removes that 

client peer’s metadata from the index library. If a client 

peer ever updates its content data, it sends an update 

message to the super-peer, and the super-peer updates its 

index accordingly. When a super-peer receives a query 

from its client peer, it matches what is in its index library 

and forwards the query to its neighbors, who in turn 

forward it to some of their neighbors, according to the 

super-peer overlay network routing algorithm Efa. After 

results (or time-outs and error messages) are received 

from all of its neighbors, the super-peer sends the 

aggregated result to the requesting client peer. 

As mentioned, super-peers are also connected with 

each other to form an application-level overlay network. 

The dynamic maintenance of the topology, and the 

efficient locating of content within this overlay network 

is described in the next section. Here, we note that super-

peers are not only cluster leaders for their client peers, 

but also members of the super-peer overlay network. 

Therefore they supply interfaces to both client peers and 

to adjacent neighbor super-peers (Figure 3). 

2.3. Client-peers 

In the present paper, regular peers are referred to as 

client peers to distinguish them from super-peers. In fact, 

they act as both clients and servers: they send requests to 

super-peers like clients, and receive other peers’ file 

download requests like servers. While providing this 

functionality, client peers can offer easy-to-use interfaces, 

through which users can connect to the system, discover 

resources in the network and finally obtain the required 

content. To accomplish this, a client peer acts as both an 

FTP client and an FTP server. After the client peer joins 

the system and uploads its content metadata to its local 

super-peer, it initiates an FTP server on a well-known 

port and waits for other peers’ download requests. After a 

client peer locates content through super-peers, it opens a 

connection and downloads directly from the node where 

the content is located.  

2.4. Backup peers 
The introduction of one more level of hierarchy makes 

the system more efficient, but the super-peer becomes a 

potential area of single-point failure for its cluster. When 

the super-peer fails or leaves the system, the entire 

cluster content index information is lost. To increase the 

reliability of the system, we introduce a backup peer as 

redundancy for the super-peer. Thus, every cluster has a 

super-peer acting as a cluster leader and a backup peer 

acting as a redundancy server. The backup peers are 

selected from the client peers too. They copy the super-

peer’s index table periodically, and when a super-peer 

fails or leaves the network, its backup peer replaces it and 

the cluster selects a new backup peer for redundancy. The 

possibility of both a super-peer and its backup peer 

failing simultaneously is much smaller than failure of the 

super-peer alone, and thus the introduction of a backup 

peer greatly improves a system’s robustness. 

Furthermore, a backup peer is dynamically selected from 

client peers in the cluster, so there is no extra burden for 

the redundancy. 

3. Backbone overlay routing 

3.1. Algorithm description 
 Our algorithm aims at suppressing flooding by 

reducing the number of duplicated query messages. There 

are many approaches to eliminating flooding, the most 

popular of which uses tree-based broadcasting. In our 

model, the number of participant nodes can be quite large 

and users are widely distributed all over the Internet. 

Therefore it is impossible to let every node know the 

whole topology of the network. In addition, all tree-based 

approaches require huge messaging overhead, associated 

with construction and maintenance of the spanning tree. 

However, in most P2P systems, participant nodes are 

typically PCs at homes or offices with their own tasks, 

and thus they cannot afford many resources for P2P 

applications. In addition, they can be very dynamic, so 

messages updating tree structures overwhelm the 

network. In light of these considerations, our objective is 

to use limited topology information and simple 

computing to decrease the duplication queries created by 

flooding. 

In a well-connected network, several different paths 

may exist to connect two particular nodes, which is the 

reason that extensive duplications may be created by 

flooding. If node v can anticipate that one of its 

neighbors u, receives query messages from another path, 

however, then v does not forward the query to u. To 

achieve this type of anticipating, we use a rule directing 

the nodes that duplicate and forward messages while we 

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04) 
0-7695-2051-0/04 $ 20.00 © 2004 IEEE 



keep track of topology information to compute the 

forwarding set. As the later experiment shows, although 

we cannot avoid all duplications, we can reduce much 

duplication for most widely used network topologies. 

The following definitions are used in the algorithm 

and discussed later in this chapter. 

• id(v): Node v’s unique id. 

• N(v): Neighbor set of .v

• NN(v): Neighbor’s neighbor set of .v

• fr(u,v): v is the current node, u is the node which 

forwards the query to v. fr(u,v) is the forward reaching 

set of u for the current node v, that is, the immediate 

(no more than 2 hops away) set of nodes reached by 

the local flooding source u.

• routing(u,v): For local source u, current node v’s 

routing set. For example, if u forwards the query 

package to v, the set of nodes v forwards is decided by 

routing(u, v). 

The algorithm in figure 4 describes the routing 

process for the current node, v, when it receives a query 

from its neighbor, u.

forward(u,v) 

/*when node v receives forwarded query from its neighbor 

u, this algorithm decides how v forwards this query */ 

If  the received query has been received before 

discard it  

else 

 if  u is null /* v is the node which initiates the query*/ 

  forward the query to N(v) 

 else 

  forward the query to routing(u,v) 

(a)

fr(u,v) = N(u) ∪ { all  v’ in  NN(u)  |  id(v’)< id(v)}  

routing(u,v) = all  v’ in N(v), such that

1. v’∉fr(u,v) AND

2. {N(v’) ∩ fr(u,v)= ∅} OR {N(v’) ∩ fr(u,v) =A 

AND (∀ v’’ ∈ A AND id(v’’)>id(v)) } 

(b)

Figure 4: Routing algorithm, where (a) is the routing 
process, and (b) is the algorithm to compute fr(u,v) 
and routing(u,v). 

We use an example to explain the algorithm. Figure 5 

depicts a simple network topology, where N5 is the 

current node. In the case of flooding, when N5 receives 

message sent from N1, N5 would forward the message to 

all of its neighbors except N1. Therefore, N5 forwards the 

messages to N3, N6, and N8. However, if it uses Efa, N5

does not need to forward the message to all of its 

neighbors, but only to those that may not be reached by 

N1. Messages from N1 reach all neighbors of N1, which 

are N2 and N7. Because id(N2) is smaller than id(N5),

the message also reaches N2’s neighbors, N3 and N4.

Finally, we get: fr(N1,N5)={N2, N7, N3, N4}. Therefore, 

when N5 receives a message from N1, it does not forward 

the message to its neighbor N3, because N3 is in the set 

fr(N1, N5). N5 does not forward the message to N6

either, because N6’s neighbor N4 is in fr (N1, N5), and id 

(N4) is smaller than id (N5). So at last, N5 only forwards 

the message to N8.

Figure 5: A simple network topology 

3.2. Algorithm correctness 

Assuming the network is connected, the protocol 

described above guarantees a query message be 

forwarded to all nodes in the network.  For an arbitrary 

node v, which receives forwarding query from its 

neighbor node u, the entry (u,v) in the routing table of v

decides which neighbors the query would be forwarded. 

And the entries in the routing table is computed with the 

following principle: If v’s neighbor x ∈ fr(u, v), then v

need not forward the query to x, because v knows x has 

been reached by u. If x∉ fr(u), but x’s neighbor y ∈ fr(u),

we compare the id of y and v, if v’s id is smaller, then v

forward the query to u, otherwise, v leave the query for y

that has a smaller id to forward the query. Therefore, for 

an arbitrary neighbor of v, it would be reached either by v

or by other nodes in u’s reaching set, whose id is smaller 

than v’s. Consequently, all nodes in the network will be 

reached by the forwarding protocol. 

4. Experiments 

We have performed two kinds of experiments to 

evaluate the system. First, we designed a simulator to 

evaluate the performance and scalability of the routing 

protocol, because it is impossible to run the system in an 

Internet-based network with millions of computers. 

Second, we installed our P2P software on the LAN of the 

Computer Science Department of UBC to test and 

evaluate the real system. 
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4.1. Routing protocol test 

In order to evaluate the super-peer level overlay 

network’s discovery mechanisms, we have developed an 

event-based simulator in Java. The simulator can 

simulate the application-level broadcasting and query 

searching processes with different routing algorithms and 

network topologies.  

Minimizing the system overhead is an important 

objective for our algorithm. In our experiments, we 

define the overhead as the duplicated messages on the 

network. Figures 6 compare the system overhead when 

using Efa with the overhead when using simple flooding. 

Our experiments run on three different network 

topologies: grid topology, random topology and Barábasi-

Albert random topology [8]. In the simulation, we set the 

TTL to “unlimited,” to make the broadcast reach every 

node in the network. For each topology, we vary the 

network size and repeat the tests ten times, then compute 

the average results. The results reveal that Efa greatly 

reduces network overhead for all three topologies, 

compared with flooding. 

Figure 6: System overhead vs. network size for 
different network topology: (a): grid topology, (b): 
random topology, (c): Barábasi-Albert random 
topology 

Figure 7 depicts the relationship of network 

duplication ratios and network average degrees. The 

experiment is performed on a random topology network 

with 3000 nodes. The network duplications increase with 

the network average degree in the flooding situation. For 

Efa, when network average degree grows to some extent, 

the duplication ratio begins to decrease with the increase 

of average node degrees.  

Figure 7 Degree vs. duplication 

Figure 8 Success rate vs. system overhead 

The experiment in Figure 8 is performed on the 

random topology with 3000 nodes and an average degree 

of 5. The content is replicated at 0.3% of the randomly 

selected nodes in the network. The result in Figure 9 

identifies the relationship of query success probability to 

the number of messages produced in the system.  

All experiments performed on different network 

environments demonstrate that compared with simple 

flooding, Efa reduces many overheads of individual 

nodes as well as the loads of the whole network. It 

achieves better performance and scalability than flooding 

does, especially when the network is well connected or 

the network size is large. 

4.2. Real system test 

The experiment environment is made up of 16 PCs 

with Intel Pentium  1.004 GHz processor and 256M of 

RAM, and all the PCs are running the Red Hat Linux 9 

operating system. There are a total of 50 different files in 

the system. Every peer maintains 20 files and each of the 

files is around 5KB. To test our architecture, we 

randomly choose one to serve as a well-known 

registration server and the other 15 PCs to serve as peers. 

The 15 peers are grouped into three clusters. In every 

cluster, a peer also acts as a super-peer. To evaluate the 

system performance, we compare it with a Gnutella 

system. The topology of Gnutella is randomly generated 

with an average degree of 4. In both systems, to generate 

the network traffic peers send queries every two seconds. 

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04) 
0-7695-2051-0/04 $ 20.00 © 2004 IEEE 



Because the experiments are conducted on a LAN, the 

transmission time between two nodes is too short to 

reflect the real Internet environment, therefore we add 

0.1 second delay for every transition between two nodes.  

Figure 9 Hit rates vs. system overhead 

Figure 10 Time vs. system overhead 

Figure 9 shows the query hits and number of messages 

needed. To attain the same number of successful query 

hits, ECSP sends significantly fewer messages than 

Gnutella does. 

Figure 10 reviews the relationship of time consumed 

and system overhead: for any time period, our system 

creates less traffic than Gnutella does. Therefore, our 

system accrues lower costs than Gnutella. 

Figure 11 Time vs. query hits 
Figures 11 and 12 compare ECSP and Gnutella in 

terms of query hits and completion time. Two 

observations can be drawn from these comparisons: as 

Figure 12 shows, our system uses much less time to 

finish the same amount of queries; with the same time 

limit, our system can finish more queries (Figure 11).  

In sum, all of our experiments prove that the ECSP 

structure and the Efa backbone routing protocol 

dramatically decrease the cost of queries without 

decreasing the ability to satisfy queries, compared with 

Gnutella and simple flooding. 

Figure 12 Query hits vs. completion time 

5. Conclusions 

In this paper, we investigate P2P systems currently in 

use, primarily on decentralized, unstructured systems. 

Two major deficiencies of unstructured P2P networks are 

addressed: scalability and efficient search mechanisms. 

Consequent to our observations, we propose a 

hierarchical-based super-peer structure, ECSP. 

Experiments are performed both with a real network 

environment and with simulation tools. The experimental 

results demonstrate that the ESCP architecture and the 

overlay broadcasting algorithm achieve good 

performance and scalability, and they can be used to 

construct powerful infrastructures for very large scale, 

unstructured P2P environments.  

.
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