Using Error Abstraction and Classification to Improve the Quality of Requirements: Conclusions from Family of Studies
Abstract 

Achieving software quality is a primary concern for software development organizations. Researchers have developed many quality improvement methods that help developers detect faults early in the lifecycle. To address some of the limitations of fault-based quality improvement approaches, this paper describes an approach based on errors (i.e. the sources of the faults). This research extends Lanubile, et al.’s, error abstraction process by providing a formal requirement error taxonomy to help developers identify both faults and errors. The taxonomy was derived from the requirement errors found in the software engineering and psychology literature to help developers identify both errors and faults. This error abstraction and classification process is then validated through a family of empirical studies. The main conclusions derived from the four experiments are: (1) the error abstraction and classification process is an effective approach for identifying faults, (2) the requirement error taxonomy is useful addition for the error abstraction process, (3) deriving requirement errors from cognitive psychology research is beneficial.
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1. Introduction
Ensuring the quality of software is a major goal for software engineers. As a result, researchers have developed many quality improvement approaches and evaluated them with controlled experiments and case studies in both laboratory and realistic settings (e.g., (Sakthivel, 1991; Chillarege, 1992; Florac, 1992; Chaar, 1993; Lawrence, 2004)). Researchers have devoted considerable effort to creating methods to help developers find and repair problems early in the lifecycle rather than late. It is estimated that 40-50% of the development effort is spent on avoidable rework, i.e. fixing problems that should have been fixed earlier or should have been prevented altogether (Boehm, 2001). To eliminate unnecessary rework, the effectiveness of early-lifecycle defect detection and removal must be improved.

Most of these early-lifecycle quality improvement methods focus on faults, i.e., mistakes recorded in an artifact. The use of fault classification taxonomies has been empirically shown to help developers identify important faults (e.g., (Chillarege, 1992; Lezak, 2000; Carver, 2003)). While they are useful, approaches using fault taxonomies are not 100% effective. One cause for rework is that early-lifecycle fault detection techniques do not lead developers to identify all of the important problems. Therefore, to augment existing fault-based approaches and further improve software quality, new methods are needed.

Before going any further, it is important to clearly define two terms: error and fault. Unfortunately, the software engineering literature contains competing, and often contradictory definitions of these two terms. In fact, IEEE Standard 610.12-1990 provides four definitions of the term error, ranging from incorrect program condition (referred to as a program error) to mistake in the human thought process (referred to as a human error) (IEEE Std 610.12, 1990). To allay confusion, we provide a definition for each term that will be used consistently throughout this paper. These definitions were originally given by Lanubile, et al. (Lanubile, 1998), and are consistent with software engineering textbooks (Endres, 2003; Pfleeger, 2003; Sommerville, 2007) and IEEE Standard 610.12-1990 (IEEE Std 610.12, 1990).
Error - defect in the human thought process made while trying to understand given information, solve problems, or use methods and tools. For example, in the context of software requirements, an error is a misconception of actual needs of a user or customer.
Fault - concrete manifestation of an error within the software, one error may cause several faults and various errors may cause identical faults.
The term defect is used to describe either of these two types of problems. The definition of an error used in this paper more closely correlates to the human error definition rather than the program error definition in IEEE Standard 610.12-1990. 

The main shortcoming of fault-based approaches is the absence of a direct mapping between errors (the source of the problem) and faults (the manifestation of the problem). For example, a common requirement fault is omission of important functionality. An omission fault has at least two possible sources: 1) the requirement engineer may have lacked the domain knowledge necessary to realize that the functionality was needed, or 2) the missing functionality was needed by a stakeholder who was not included in elicitation process. In order to understand and fix the real problem, the development team must determine not only that the omission occurred, but more importantly why it occurred. 

In this paper, we argue that use of an error-based approach will improve software quality. In fact, other researchers have employed this idea to augment fault detection by examining the sources of faults, e.g., Root Cause Analysis and the Orthogonal Defect Classification (discussed further in Section 2.1. If our approach can help developers identify and eliminate errors, then consequently, the number of faults will decrease and software quality will increase. Furthermore, by identifying errors, developers can then find additional related faults that may have otherwise been overlooked (similar to the way a doctor will find and treat all symptoms once he determines the underlying disease). A taxonomy created by grouping related errors will provide information to help developers detect errors in the same way that fault taxonomies help developers identify faults. This paper investigates the use of a newly-developed error taxonomy to help developers detect errors and the resulting faults during an inspection.

Because software engineering is a human-based activity, it is reasonable to investigate the fallibilities of the human mental process in relation to software development. Therefore, we exploited advances made by cognitive psychologists in human error research. This research draws upon models of human reasoning, planning, and problem solving, and how these ordinary psychological processes can go awry.  Exploiting a connection with cognitive research is particularly useful for understanding the causes of software faults. Case studies have shown that human errors, e.g., errors related to the human cognitive process in general and not specifically related to software engineering, can occur during software development (e.g., (Lezak, 2000)).

One challenge is integrating research findings from cognitive psychology with knowledge about software quality improvement. This integration is facilitated by an in-depth understanding of how the human cognitive process can fail as a developer creates software artifacts. These cognitive failures (errors) can then result in software faults. Therefore, this paper first describes a comprehensive requirement error taxonomy based on information from software engineering research and cognitive psychology research. Then, the paper presents three studies used to validate various properties of that taxonomy.

The remainder of this paper is organized as follows: Section 2 discusses existing error-based quality improvement approaches, along with their limitations, to provide context for the research approach described in Section 3. Section 3 also provides the framework used to evaluate the requirement error taxonomy. Sections 4 and 5 describe four studies used to evaluate the requirement error taxonomy. Section 6 discusses the major findings and implications across all four studies. Finally, the conclusions and future work are presented in Section 7. 

2. Background for Related Work
Researchers have used the origin of faults to develop a number of quality improvement approaches. While many of these approaches are useful, in general, they have two shortcomings. First, these approaches do not typically define a formal process for finding and fixing errors. Second, these approaches may be incomplete because they were developed based on a sample of observed faults rather than on a strong cognitive theory that provides comprehensive insight into human mistakes. Section 2.1 discusses three major research efforts that have focused on the sources of faults. Then Section 2.2 provides an overview of how Cognitive Psychology research can help identify the sources of faults from a cognitive perspective.

2.1 Research on Sources of Faults
This line of research, which seeks to identify systematic problems in a software development process as a basis for process improvement, is referred to by various names (Root Cause Analysis, Defect Cause Analysis, Software Failure Analysis, and Software Bug Analysis) (e.g., (Mays, 1990; Kan, 1994; Grady, 1996; Card, 1998; Nakashima, 1999; Lezak, 2000; Jacobs, 2005; Masuck, 2005)). While each of these approaches uses a different process, they all focus on identifying the source of faults found late in the lifecycle. In the Defect Causal Analysis approach, faults are stored in a database and analyzed separate from the development process (Card, 1998). The Root Cause Analysis approach provides a set of multi-dimensional triggers to help developers characterize the fault source (Lawrence, 2004). In the Software Failure Analysis approach, a sample of faults is analyzed to identify common sources for classes of faults (e.g. User Interface faults) (Grady, 1996). Finally, Jacobs, et al., developed an approach that uses accumulated expert knowledge to identify the sources of faults, rather than performing a detailed analysis of each fault (Jacobs, 2005). Our work builds upon these findings but places the emphasis on faults that can be found early in the lifecycle (i.e., during the requirements phase) rather than late.   

Similarly, the Orthogonal Defect Classification (ODC) is an in-process method used by developers to classify faults using a predefined taxonomy. Then, the developers identify a trigger that revealed the failure (not necessarily the cause of fault insertion). Because the triggers explain the actions that revealed the failure at the code level, ODC is more objective than identifying the cause of fault insertion, which may be less clear. This approach has been shown to provide useful feedback to developers (Chillarege, 1992). Our work builds on the concepts of ODC by helping developers understand not only what caused a fault to be revealed, but more interestingly what caused the fault to be inserted.

The third approach, by Lanubile, et al., is referred to as Error Abstraction. In this approach, developers examine the faults detected during an inspection to determine their underlying cause, i.e. the error. The process consists of three major steps. First, the artifact is inspected to identify faults. Second, the inspectors determine the underlying errors that led to faults or groups of faults. This step is called error abstraction. Finally, the inspectors reinspect the requirements looking for any additional faults that were caused by errors identified in the second step. This approach showed promising results, but this line of research was not extended (Lanubile, 1998). One of the shortcomings of this approach is the fact that the error abstraction guidance is not concrete and relies heavily on the expertise of the individual inspector. Our work extends the error abstraction approach by providing concrete guidance in the form of an error taxonomy, which includes research from cognitive psychology (Section 2.2), to help developers during the error abstraction and re-inspection process. Error classification using the error taxonomy (Section 3.1) helps developers gain a better understanding of the errors and guides their second round of inspections. 

2.2 A Cognitive Psychology Perspective on Errors
While psychological study of human errors begun during the 1920’s (Reason, 1990), two large accidents (the 1994 Bhopal pesticide accident and the 1996 Chernobyl nuclear power plant accident) spurred renewed interest in the field (e.g. (Norman, 1981; Card, 1983)). Systematic human error models were built on basic theoretical research in human cognition, especially from an information processing approach. It quickly became apparent that errors were not the result of irrational behavior, but rather resulted from normal psychological processes gone awry. Two approaches for studying human error have emerged. The first approach focuses on an individual’s actions and the psychological processes that resulted in error. The second approach focuses on system level (e.g. problems in communication, training, and safety mechanisms within an organization) errors. Each approach has contributed an important perspective on the origins and types of human error as well as provided methods to reduce human error. 

Reason (Reason, 1990) introduced the Generic Error-Modeling System (GEMS) to explain errors made by individuals as they work. He identified three types of errors: 1) Skill-based errors arise when routine actions are erroneously carried out in a familiar environment; 2) Rule-based errors arise when a familiar if-then rule is erroneously applied in an inappropriate situation; and 3) Knowledge-based errors occur when reasoning about and planning solutions to novel problems or situations. In software engineering, skill-based errors may appear during coding (e.g., a programmer forgot to include a buffer-overflow check even though he intended to) or during requirements and design (e.g., by omitting important details when documenting a familiar environment). Rule-based errors are more likely to appear in the design phase, when a designer may select a familiar design pattern even though it is not appropriate for the current system. Finally, a knowledge-based error may occur when the software engineer fails to understand the unique aspects of a new domain and as a result produces an incomplete or incorrect set of software requirements.

A key assumption of the GEMS approach is that, when confronted with a problem, people tend to find a prepackaged rule-based solution before resorting to the far more effort-intensive knowledge-based level, even when the latter is demanded at the outset (Reason, 1990). The implication of this tendency is that software engineers are likely to employ familiar requirements engineering approaches even when these approaches are inappropriate for the current system and lead to faults. The GEMS approach defines several skill-based, rule-based, and knowledge-based errors based on factors such as attention, information overload, and problems with human reasoning about if-then rules in familiar and novel situations. 

At the organizational level, Rasmussen, et al., (Rasmussen 1982; Rasmussen 1983) employed a similar skill-rule-knowledge framework: Rasmussen relates “skill” to the actions which comes natural as a result of practice and requires no conscious checking; “rule” to the type of behavior which follows a standard sequence which has been developed through experience; and “knowledge” to the behavior exhibited when reacting to novel situations for which no standard working method is available. Rasmussen focused on the human information processing and corresponding knowledge states during the decision-making process. By focusing at the level of the entire system that produced the error, rather than on the individual who made the obvious error, Rasmussen’s approach has helped to foster error-tolerant systems. This approach has been particularly valuable in industrial situations, where accidents may have tragically large costs. 

Both individual and systems-level accounts of human errors have been successfully used to explain errors in a broad range of disciplines and to introduce new safety mechanisms that have reduced the probability of errors. The benefits have been seen in the investigation of medical errors (Wickens, 2000), aviation errors (Nagel, 1988), and the Chernobyl nuclear power plant explosion (Reason, 1990).
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Even with these successes, the understanding of how to apply human error research to software engineering is not obvious. Much of the understanding of human error has come from case studies of accidents. Errors in software engineering processes are somewhat different than the examples previously discussed. Therefore, the models of human error will have to be adapted to software errors. A better understanding of the origin of faults (errors) and of the means to reduce faults will contribute positively to software engineering. 
3. Research Approach
Our research combines information from software engineering and cognitive psychology to develop a requirement error taxonomy to support the error abstraction process (defined in Section 3.1). The two major goals of this work are to: 1) develop a requirement error taxonomy, and 2) evaluate whether using the error taxonomy to support the error abstraction is valuable.

 Figure 1 illustrates the process for developing and evaluating the requirement error taxonomy. 
The requirement error taxonomy was developed by combining known errors (from software engineering research and from cognitive psychology research about human errors). First, an initial taxonomy was developed (1.Ad-hoc Review) and empirically evaluated (2.Feasibility Study at MSU). Then, the taxonomy was refined using a more systematic approach (3.Systematic Review), and re-evaluated through three more empirical studies (4.Control Group Study and 5.Observational Study at MSU; and 6.Control Group Replicated Study at NDSU). 
Section 3.1 provides a detailed description of the taxonomy development. Section 3.2 provides a detailed description of all the four empirical studies Shown in Figure 1. 
3.1 Development of Requirement Error Taxonomy
We developed the requirement error taxonomy to help reviewers identify and better understand the errors abstracted from faults. By providing a concrete list of error classes, developers will also have guidance about how to identify additional errors and faults during the reinspection process. 
The requirement error taxonomy has evolved through two versions. First, we performed an ad-hoc review of the software engineering and psychology literature to develop initial requirement error taxonomy (V1.0) (Walia, 2006a). The results from a feasibility study evaluation, described later in this paper, showed that the use of the error taxonomy was beneficial for developers (Walia, 2006b). Second, after establishing feasibility, we performed a systematic literature review (Walia, 2009), as opposed to the ad hoc approach to identify and document the important types of requirement errors. The systematic approach is commonly used in other fields (e.g. medicine) to extract high-level conclusions from a series of detailed studies. The systematic literature review included 149 papers (from software engineering, human cognition, and psychology) that provided insight into requirement errors. To generate the taxonomy, similar types of errors identified in the literature were grouped into three high-level types and 14 detailed error classes (as shown in Figure 2).
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People Errors include mistakes that originate with the fallibilities of the individuals involved in project development. Process Errors are caused by mistakes in selecting the means of achieving goals and objectives and focus mostly on the inadequacy of the requirements engineering process. Documentation Errors are caused by mistakes in organizing and specifying the requirements irrespective of whether the developer correctly understood the requirement. The 14 detailed error classes are described in Table 1. 

Each error class was derived from specific errors identified in the software engineering and human cognition literature. Specifically, the human cognition errors fall into seven error classes: Domain Knowledge, Specific Application Knowledge, Process Execution, Inadequate Method of Achieving Objectives, Organization, Specification, and Other Cognition.

While V1.0 and V2.0 of the taxonomy contained the same error types and classes, the systematic literature review expanded the error description in some classes in V2.0. The complete description of the systematic review process, details of the requirement error taxonomy and examples of errors and related faults has been published as a systematic literature review (Walia, 2009)
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To illustrate the information contained in the requirement error taxonomy, we provide an example participation error (one of the People Errors) along with a related fault:

Error: An important stakeholder (e.g., a bank manager in an ATM system) was not involved in the requirement gathering process;

Fault: Some functionality (e.g., handling multiple ATM cards simultaneously at different machines) was omitted.

The systematic review has a similar example for each of the fourteen error classes (Walia, 2009).

3.2 Evaluation of Requirement Error Taxonomy
To evaluate the usefulness of the requirement error taxonomy and the error abstraction process, we conducted a family of controlled experiments (three at MSU and one at NDSU) as shown in Figure 3. While each study focused on the same basic hypotheses, the designs of later studies were slightly modified based on the lessons learned during the earlier studies. This section discusses the hypotheses common to all these studies. 
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Sections 3.2.2 to 3.2.5 provide a high-level overview of each study along with its major results (more details about each study appear in Sections 4 and 5). Finally, it provides a description of the data collected in all of the studies. Study 1 and Study 2 have each been reported on in detail in conference publications (Walia, 2006; Walia, 2007). Therefore, the goal of this paper is to highlight important results from each study, rather than report all the details, and then draw conclusions across all four studies.
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Study Hypotheses and Variables
Table 2 contains the five hypotheses explored in each of the three studies. 
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Hypothesis 5 investigates the effect of a series of independent variables on the dependent variables. Table 3 provides a detailed definition of each of these variables.
3.2.2 Study 1: The Feasibility Study
Study 1 evaluated the initial version (V 1.0) of the requirement error taxonomy. This study used a repeated-measures quasi-experiment design (without a control group) in a senior-level full-year capstone course in which students developed a real system for a real client. Students inspected the requirements document for the system using a fault checklist. Then they used the error abstraction and classification process along with the requirement error taxonomy to guide a reinspection of the requirements. The results indicated that the error taxonomy was easy to use and led to a significant number of additional faults found during the reinspection. 

The promising results from Study 1 motivated the systematic literature review and the design of the Study 2 (that had a control group) and Study 3 (that had a participant observer). Further, the positive results from Study 2 motivated the design of the Study 4 as shown in Figure 3.
3.2.3 Study 2: A Control Group Study

This study replicated Study 1 with a change to the study design. We added a control group to address a major internal validity threat present in Study 1. The goal was to understand what portion of the additional defects found during reinspection were due to the error abstraction process and requirement error taxonomy (V2.0) and what portion were due simply to performing a second inspection of the same artifact. The experimental group followed the same process as in Study 1, that is they performed an inspection with a fault checklist, followed by a re-inspection using the error abstraction and classification process. In contrast, the control group performed two inspections (without using the error abstraction and classification process during the second inspection). The number of faults found during reinspection by the control group was compared with the number found by the experimental group to determine whether there was a difference. The major result of this study was that the experimental group found significantly more faults than the control group during the reinspection, providing support for the benefit of using the error abstraction and classification process over simply performing two inspections.

3.2.4 Study 3: An Observational Variable Replicated Study

After gathering some evidence that the error abstraction and classification process was useful, the goal of the third study was to gain insights into the thought process of subjects while using the error abstraction and classification process. This goal was achieved by replicating Study 1 with the addition of a participant observer who observed the interactions among the subjects and client during requirement development meetings and among the subjects during inspection team meetings. The results of the study showed that the developers found the error taxonomy (V2.0) both easy to use and effective. The observational data also provided useful insights that were not obtained from data in the earlier studies.

3.2.5 Study 4: A Control Group Replicated Study

During Study 2, it is likely that the control group subjects were less motivated during the second inspection because they were using the same fault checklist. To address the maturation threat, this study replicated Study 2 with the addition of Perspective Based Reading (PBR) technique. PBR is a mature inspection technique in which an inspector 1) read the document from point of view of different stakeholders (e.g., user, designer, or tester), 2) follow a series of steps to create an abstraction of artifact being inspected based on their perspective (e.g., a designer using the PBR technique produces a system design), and 3) use this abstraction to answer questions (derived from fault taxonomy) and find faults. PBR has been empirically validated as an effective technique for detecting faults in a software artifact [Basili 1996]. 

The experiment group and control group performed first inspection using the fault checklist technique as in Study 2. However, during the second inspection, the subjects in the control group used the PBR technique (unlike fault checklist in Study 2), and the subjects in the experimental group used the error abstraction and classification process (same as in Study 2). The result from this study showed that the experimental group found significantly larger percentage of new faults during the second inspection than the control group, providing further evidence that using the error abstraction and classification process yields betters results than using the fault based requirements inspection techniques.
3.2.6 Organization of Discussion of the Four Studies

Rather than discussing the four studies in the order in which they occurred, we have grouped the studies based on study type. Study 2 and Study 4 are classic control-group studies and are therefore presented alone in Section 4. Study 1 and Study 3 evaluate the use of the requirement error taxonomy in the context of a real world project developed by university students. Because of the similarities in their study design, they are presented together in Section 5 to reduce repetition of information.

4. Study 2 and Study 4: A Control Group Replicated Study
Study 2 and Study 4 utilized a non-equivalent pretest-posttest control group quasi-experiment design to understand whether faults found during the reinspection step are due to use of the error abstraction process and requirement error taxonomy or due simply to inspecting an artifact for a second time. This study evaluated the revised version of the requirement error taxonomy (V2.0) (Walia, 2007). 
4.1 Study Designs
Study 2: The subjects were eighteen graduate students enrolled in either Software Verification and Validation (V&V) or Empirical Software Engineering (ESE) at MSU. The V&V course covered quality improvement approaches including software inspections. The goal of the ESE course was to teach empirical study design and data analysis. During this two-week study, the subjects inspected a requirements document for a data warehouse system developed by the Naval Oceanographic Office. The subjects did not develop the requirements document, nor did they have access to any of the developers. The subjects were divided into a control group, which included 9 students from the V&V course and an experiment group, which included 8 students from the ESE course. Four of the 17 subjects were enrolled in both courses. To balance the groups, these subjects were assigned to only one group and were not aware of activities of other group. The experiment steps, training lectures, and the output from subjects in each group at [image: image7.png]Developing
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different steps are detailed in Table 4.
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Study 4: The subjects were forty-six graduate students enrolled in Software Development Processes course at NDSU. The course covered breadth of development activities included in software engineering processes. During this two-week study, the subjects inspected a requirements document that was the same one as used in Study 2. The 46 subjects were randomly assigned into the experiment and the control group. Two of the 46 subjects dropped out of study therefore leaving 23 subjects in control group and 21 subjects in the experimental group. During the second inspection, 23 subjects in the control group were further divided into three groups of 8, 8, and 7 subjects that inspected the requirement document using the User, Designer, and Tester perspectives respectively. To balance the groups, these subjects were assigned to only one group and were not aware of activities of other group. The experiment steps and training lectures in Study 2 and Study 4 are shown in Figure 4. 
The main differences in the study designs of Study 2 and Study 4 are highlighted in Figure 4 and are summarized as follows:

· The control group subjects in Study 4 used PBR technique during second inspection instead of using the fault checklist technique as used in Study 2;

· The experimental and control group subjects in Study 2 were from different courses, whereas the experimental and control group subjects in Study 4 were selected from the same course;

· Unlike Study 2, no in-class discussion was held with subjects in Study 4 after the study. Only the post-study questionnaire was used to gather the feedback from participating subjects. 

· The feedback from the participating subjects in Study 2 showed that error information in the requirement error taxonomy could have helped them during the error abstraction step. In Study 4, Training 2 (on error abstraction) and Training 3 (on RET) in Study 2 were combined into a single training session. Consequently, the “error-fault list” and “error-class list” (as shown in Table 4) was combined into a single list as an output from Step 2 in Study 4.

4.2 Data Analysis and Results
The results are organized around the five hypotheses presented in Section 3. In all cases, an alpha value of 0.05 used to judge statistical significance.

4.2.1 Hypothesis 1: Improve Effectiveness and Efficiency
The effectiveness of the experiment and control group were compared using an independent samples t-test. Figure 5 shows that during the first inspection, there was no significant difference between the control groups (avg. of 18 faults in Study 2 and avg. of 12 faults in Study 4) and the experimental groups (avg. of 22 faults in Study 2 and avg. of 15 faults in Study 4). However, during the second inspection, the experimental groups (avg. of 17 new faults in Study 2 and avg. of 10 faults in Study 4) were significantly more effective than the control groups (avg. of 3 new faults in Study 2 and avg. of 6 faults in Study 4) [p= .002 for Study 2 and p= .051 for Study 4].
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Also, the experimental group in Study 2 was significantly more effective overall (i.e. first inspection plus second inspection) than the control group (p= 0.004). However, the experimental group in Study 4 was not significantly more effective overall than the control group (p= 0.873). Since, the control group in Study 4 was more effective (though not significantly more effective [p= .230]) than the experiment group during the first inspection, we compared the percentage increase in the effectiveness of subjects in both groups during the second inspection. The result showed that the subjects in experiment group found significantly larger percentage of new faults during the second inspection than the subjects in control group [p= .000].  
Efficiency is calculated as: faults/time. For the experimental group, the time includes the time spent abstracting and classifying errors and the time spent performing the inspection. For the control group, the time includes only inspection time. The experimental group in Study 2 and Study 4 was more efficient during reinspection. However, the difference in efficiency between the two groups was significant only in Study 4. The experiment group in Study 4 was also more efficient than the control group (who in fact found more faults) during the first inspection.

Because the experimental group in Study 2 was not significantly more efficient, it is possible that the increase in the effectiveness by the experimental group was due to extra effort. But, an analysis of covariance showed that the amount of effort did not have a significant effect on effectiveness.

Because we conducted four analyses on the same dataset, we introduced the Bonferroni correction (Bland, 2000) to reduce the likelihood of making a Type I error. Therefore, the alpha value was reduced to .013 (.05/4). Using this smaller alpha value, only the experimental group in Study 2 is significantly more effective than the control group.

4.2.2 Hypothesis 2: Usefulness of Requirement Error Taxonomy

The subjects used a 5-point scale (0- Very Low, 1- Low, 2- Medium, 3- High, or 4- Very High) to evaluate the requirement error taxonomy on to ten attributes: simplicity, usability, orthogonality, usefulness, understandability, intuitiveness, comprehensiveness, uniformity across products, adequacy of error classes, and ease of classifying errors. For each attribute a one-sample t-test was conducted to determine whether the mean response was significantly greater than 2 (the midpoint of the scale). All of the above attributes were significantly positive in Study 4. However, only the following five attributes were favored as significantly positive by subjects in Study 2: 1) usefulness (p= .033), 2) understandability (p= .033), 3) uniformity across products (p = .049), 4) adequacy of error classes (p = .033), and 5) ease of classifying errors (p= .033). The other attributes were also rated positive but not significantly. Overall, the subjects viewed the requirement error taxonomy favorably.

4.2.3 Hypothesis 3: Insights into the Major Source(s) of Requirement Faults

This section investigates three major questions. First, do the three error types make significantly different contributions to the overall defect rate? The first two rows in Table 5 show the distribution of errors and faults. People errors were most common in Study 2 and Study 4, while documentation errors actually led to more faults in Study 2. A chi-square test is used to evaluate whether the distribution is significantly different from uniform. The chi-square test confirms that the error types made significantly different contributions to fault injection. The significant contributions are highlighted in Table 5. 
Second, is each of the 14 error classes valid and necessary? The results showed that there was at least one fault caused by an error from each error class in the two studies. Therefore, each error class is valid and necessary.

Third, which error type(s) are the major source of redundant faults, time consuming faults, multiple faults, important faults and sever faults?  Redundant faults are faults that were found by more than one subject. Time consuming faults are faults that took longer than the average time (12 minutes in Study 2 and 10 minutes in Study 4) to locate. Errors that cause multiple faults are errors that are the source of more than one fault. The importance attribute has five levels (0-not important to 4-highly important) and the severity attribute has four levels (0-not severe to 3-will cause failure). The results presented in Table 5 included levels 2, 3, and 4 levels for the importance attribute (ranging from important to highly important) and levels 2 and 3 for the severity attribute. 

The bottom 5 rows in Table 5 show the results. Again a chi-square test is used to evaluate whether the distribution is significantly different from uniform. For each variable, people errors caused significantly more faults than process or documentation errors. Even though documentation errors led to more faults in Study 2, those faults tended to be less important and severe, according to the subjects’ rankings.
4.2.4 Hypothesis 4: Usefulness of Cognitive Psychology

Some of the error types in the error taxonomy were derived from cognitive psychology research (as explained in Section 3.1). The data from eight experiment group subjects in Study 2 indicated that 25% of the errors found by experiment group subjects in Study 2 were of these error types. These errors in turn led to 21% of the faults. Similarly, twenty-one experiment group subjects in Study 4 found 29% of these errors. Those errors in turn lead to detection of 28% of total faults. Out of all the subjects, only one subject in Study 4 did not find any cognitive psychology related error (as shown in Figure 6). Figure 6 also shows that these errors were not isolated to a small number of subjects. Rather they were spread fairly evenly across all subjects. This result indicates that cognitive psychology research made a useful contribution to the error taxonomy.

4.2.5 Hypothesis 5: Effect of Independent Variables

The effects of the five independent variables in Table 3 on subject effectiveness were analyzed using a linear regression analysis. The results, shown in Table 6, indicate that Process Conformance, Pre-test and Effort Expended all showed a significant positive correlation to effectiveness during re-inspection. This result means that subjects who followed the process, understood the taxonomy and invested an appropriate amount of effort were more effective. Neither Training Usefulness nor Difficulty Level was significantly correlated with effectiveness.

4.3 Validity Threats
The following threats were addressed in one or both of the studies:

· To address conclusion validity, a 5-point scale was used for ratings and nonparametric chi-square tests were used because they minimize the assumptions of the underlying data.

· To address internal validity, the subjects were not informed of the study goals; therefore they were not biased in the data provided. The subjects were graded based on their participation in the study rather than the actual information they provided. 
· To increase external validity, the study used a real requirement document developed by professionals. Also, subjects in Studies 2 and 4 inspected the same requirement document.
· A selection threat in Study 2 exists because the subjects were allocated to groups based on the course in which they were enrolled in. This threat was reduced by selecting the course (V&V) whose students were more likely to perform better inspections (because of the course material) to be the control group. This choice was made so that if any bias was present, it would be in favor of the control group and not the experiment group. This threat was overcome in Study 4 where the subjects were randomly assigned from the single course. 
· A maturation threat in Study 2 also exists because the subjects in control group performed two inspections on the same document using the same technique. Although, such a result would be a good argument for providing a different approach for the reinspection to help inspectors stay engaged in the activity. This threat was addressed in Study 4 by having the subjects in control group use a PBR technique during the second inspection.
However, there was an external validity threat that could not be addressed in Study 2 and Study 4 because the subjects were all graduate students and likely to have different experience and time pressure than professionals in real settings.

5. Study 1: Feasibility Study and Study 3: A Replicated Study with Observation 
The goal of Study 1, a repeated measures quasi-experiment, was to understand whether the initial requirement error taxonomy (V1.0) could be effectively used in a traditional inspection process. It compared the effectiveness of student teams with and without using the taxonomy (Walia, 2006b). 

Study 3 was a replication of Study 1, but with an additional emphasis on qualitative data. It used a participant observer to capture firsthand observations about the behavior and interactions among subjects that could not be collected quantitatively. The main goal was to gain insight into the human thought process related to requirement error and faults.
5.1 Study Designs
The subjects in both studies were senior-level computer science or software engineering students enrolled in the senior design capstone course during two different years. During the course, the students interacted with real customers to elicit and document the requirements for a system they would later implement. In each study, the subjects were divided into two independent teams that created their own requirements document. 
Table 7 provides the details. Note that while the two teams in Study 3 developed the same system, conference management, they worked independently and created separate requirement documents and separate systems.

The studies began after the teams had developed the initial requirement specification for their respective systems. These studies contained the same training and steps as used by the experiment group in Study 2 (see Figure 4), other than the exceptions described in Table 8.
Figure 7 illustrates the study design. Because Study 3 is a replication of Study 1, the only difference between the two studies is the addition of a participant observer. The role of the participant observer is shown by the dotted lines and is described in the remainder of this section. 

During Study 3, one of the authors acted as a participant observer during portions of the requirements development and review process. Seamen, et al., point out that observing communication among software developers during team meetings offers an easy yet important approach to understand the thought processes of software developers (Seaman, 1997; Seaman, 1999). Therefore, in this study, the participant observer gathered field notes during team meetings for requirements gathering and team meetings for requirement inspection. Details of the responsibilities of the observer, and data collected during by the observer are described in the remainder of this section.

Observations during the requirements gathering team meetings- During these meetings, the client explained the requirements to members of both teams together, who were given an opportunity to ask questions for clarification. Later, each team met separately with the client to clarify any remaining issues and gather additional requirements. By observing these meetings and documenting any observed errors, we could later check whether the subjects identified those errors during the error abstraction and classification process. The data collected included notes about the communication between the subjects and the client. 

Observations during the inspection team meetings- Prior to any team meetings, each subject independently performed the inspection, error abstraction and error classification tasks. There were three team meetings in which the team members discussed their individual lists to agree on a final team list of errors or faults (depending on the stage of the process). These meetings occurred after the first inspection, after the error classification, and after the reinspection. The observer was present at each meeting for both teams to gather observations about the communication and interactions among subjects and to record additional faults and errors identified during the team meetings.

5.2 Data Analysis and Results
This section describes the results from Studies 1 and 3 relative to the five main hypotheses. In addition, it discusses the insights gained by analysis of the observational data in Study 3.

5.2.1 Hypothesis 1: Improve Effectiveness and Efficiency
The effectiveness of each team was analyzed by comparing the number of new, unique faults found during the second inspection (using the error abstraction and classification process) to the number of faults found during the first inspection (using the fault checklist). 

As Figure 8 shows, the teams showed an increase (faults found during reinspection / faults found during first inspection) of between 75% and 156% when using the error abstraction and classification process. Therefore, using error abstraction and classification to inform the reinspection was highly effective at helping inspectors detect faults that were missed during first inspection. A one-sample t-test showed that the increase was significantly greater than 0 for each team (p = .02 for team 1-A, p < .01 for team 1-B, p <.001 for team 3-A, and p < .001 for team 3-B).This analysis was also performed for each subject to understand whether this large increase was caused by a few subjects or spread across the entire sample. The result showed that, while some subjects had a larger increase than others, all subjects found new faults during the second inspection. 

Similar to the results from Study 2, the error abstraction and classification process did not have a significant impact on efficiency for student teams in either Study 1 or Study 3. In Study 1, there was a slight decrease in efficiency

5.2.2 Hypothesis 2: Usefulness of Requirement Error Taxonomy
The requirement error taxonomy was evaluated using the same ten attributes used in Studies 2 and 4. However (as mentioned in Section 5.1), the sixteen subjects in Study 1 evaluated the V1.0 of requirement error taxonomy using a 3-point scale (low-medium-high) whereas the twelve subjects in Study 3 evaluated the V2.0 of requirement error taxonomy using a 5-point scale (very low-low-medium-high-very high). 

Similar to the analysis performed for Study 2, a one-sample t-test was used to determine whether the ratings were significantly skewed towards “high”. In Study 1 five attributes were significantly positive: usability (p = .02), usefulness (p = .041) comprehensiveness (p = .009), uniformity (p = .009) and ease of classifying (p = .009). In Study 3, all ten attributes were significantly positive.  Two potential reasons that the taxonomy was rated more positively for Study 3 than for Study 1 are: 1) the use of 5-point scale rather than a 3-point scale, and 2) use of V2.0 of the taxonomy. These results show that the subjects had a strong positive response to the requirement error taxonomy.

5.2.3 Hypothesis 3: Insights into Major Source(s) of Requirement Faults

The analysis for these studies was conducted in the same way as for Study 2. Table 9 shows the distribution of errors and faults found by all teams into the people, process, and documentation error types. 
Table 9 shows the p-value from the chi-square test that evaluated whether the distribution was significantly different from uniform. In these studies, people errors led to the most errors and faults, as opposed to Study 2 where documentation errors led to more faults.

Table 10 also shows the p-value from the chi-square test regarding the contribution of the People, Process, and Documentation errors to redundant, time-consuming, multiple, important, severe, important, and severe faults for each team. Note that data regarding importance and severity was only collected during Study 3. In both studies, people errors were significantly more likely to cause redundant faults, multiple faults, important faults and severe faults in all but one case (for team 3-B documentation errors were more likely to cause multiple faults).

5.2.4 Hypothesis 4: Usefulness of Cognitive Psychology Research 

For all four student teams, errors related to cognitive psychology accounted for at least 1/5 of the total errors (1-A ( 21%, 1-B ( 26%, 3-A ( 32%, and 3-B ( 24%). This result was fairly consistent across the subjects on the teams. Figure 9 show that 14 of the 16 subjects in Study 1 found at least one human cognition error. In fact, one subject found only human cognition errors. Figure 9 also shows that only one subject in Study 3 (3-B subject 2) did not find any human cognition errors. Only two more did not find any faults related to human cognition errors. 
These results support the findings of Study 2 and Study 4 that errors related to Cognitive Psychology research are important to include in the requirement error taxonomy.

5.2.5 Hypothesis 5: Effect of Independent Variables 

The same five independent variables analyzed in Study 2 were analyzed in these two studies. The goal was to find any significant correlations to effectiveness during reinspection. For Study1, the variables were rated on a 3-point Likert scale, while for Study 3, a 5-point scale was used. A linear regression analysis was used:

· The median process conformance rating was significantly correlated to effectiveness (r2=.385, p = 0.03 for Study 1 and r2= .439, p= 0.019 for Study 3), meaning that the better a subject followed the process the more effective they were.

· Pre-test performance had a weak positive correlation to effectiveness during the reinspection for Study 1 (r2= .366, p = .017). However, for Study 3, the correlation was stronger, but not significant (r2 = .548, p = .065). 

· In Study 1, effort had a weak positive correlation to efficiency (r2 = .331, p = .02). This result is interesting because it shows that the more effort spent, the more faults/hour the subject found (not just more faults found). There was no correlation found in Study 3.

· Usefulness of training was significantly correlated with effectiveness in reinspection for Study 3 (p = .020), i.e. subjects who found the training useful were more effective. 

· Difficulty did not show any significant correlation. 

5.2.6 Additional Insights from Qualitative Data (Study 3)
During the requirement gathering team meetings, the participant observer recorded any errors observed during development of the requirement documents. This list of errors did not include those that might have occurred outside of the team meeting. The observer noted 17 errors made by team 3-A and 22 by team 3-B. When these lists of errors were compared to the final team error list, team 3-A found 13/17 errors and team 3-B found 20/22 errors. All of these errors were identified by subjects during individual inspections prior to the team meetings. Therefore, the requirement error taxonomy was useful in identifying errors committed during development and useful for helping developers find errors during inspection. 

For the data collected during the inspection team meetings, four analyses were performed. First, we wanted to understand whether the meeting led to additional faults or errors being identified by the group. There were two meetings related to faults (meetings 1 and 3) and one meeting related to errors (meeting 2). During meeting 1, after the first inspection, team 3-A found one new fault and team 3-B zero new faults. During meeting 3, after the reinspection, Team 3-A found five new faults and Team 3-B three new faults. Therefore, meeting 3 seems to have been more effective for both teams. During meeting 2, after error abstraction and classification, Team 3-A found one new error and Team 3-B three new errors. Therefore the team meetings led both teams to identify problems that had been missed by individuals. Specifically, meetings 2 and 3, which were informed by the error abstraction and classification process, were more effective at identifying new issues than meeting 1 was.

Second, we wanted to understand the thought processes of the developers as they discussed the inspection results. These discussions led to some new faults that were not found by any individual prior to the team meeting. For example, one member of Team 3-A indicated that the team leader did not communicate an important requirement properly, which lead to incorrect documentation. During this discussion, the team members were able to find two faults introduced in that requirement. Often during such interactions, other team members contributed to the discussion especially in terms of how such errors affected other parts of the requirements document. The results of this analysis indicated that after discussing the errors with each other, the subjects better understood the requirement problems and the faults that were likely to result. Therefore, the subjects found additional faults.

Third, we wanted to analyze the content of the discussions. The discussions were more engaging and longer during team meetings 2 and 3, which were informed by the error abstraction and classification process, than during team meeting 1. Specifically: 

· During team meeting 1, the discussion focused mainly on deciding whether the fault(s) found by individuals made sense to the rest of the team. Team members also spent time eliminating redundant faults and compiling the team fault list. The team members seemed to disagree mostly on the type of fault (i.e., incorrect fact, ambiguous, etc…) with some instances where no clear consensus was reached. 

· During team meeting 2, often different team members had classified the same error into different error classes. The discussion focused mainly on agreeing to one compiled list of errors and their classification. While there were initial disagreements, the teams always reached consensus. 

· During team meeting 3, the team members discussed the different faults they found which were caused by the same error. While compiling the individual fault lists into a team list, new faults were identified. These faults were discussed and included on the final list. Each team found more faults in this meeting than during team meeting 1. 

Finally, we wanted to understand the pattern of discussion. Because the team leader’s job was to compile the list, he was always the center of the discussion. However, we observed a pattern that after a team member finished describing their own list of errors or faults, they became less interactive. This pattern was more visible for Team 3-B than for Team 3-A. Also, the new faults and errors that arose during the discussions did not originate from a single person or small group of people. Rather, various team members were involved in identifying different faults or errors.

5.3 Validity Threats
To address conclusion validity, the threat due to heterogeneity of subjects was controlled because all subjects were drawn from the same course and had same level of education. The conclusion validity threat caused by the use of a 3-point rating scale in Study 1 was addressed by increasing the scale to a 5-point scale in Study 3. To partially address external validity threats, the studies 1 and 3 were done in the context of a capstone course where the subjects were developing a real system for a real client. Finally, the external validity threat that was unaddressed in Studies 1 and 3 was the fact that the subjects were students rather than professionals. 

6. Discussion of Results
In this section, we discuss the results of all four studies in light of the five common hypotheses. The goal of this section is to draw conclusions from across the series of studies rather than from each individual study, as was done in the earlier conference publications (Walia, 2006; Walia, 2007). In some cases the general conclusions are the same as those drawn in a single study, but stronger because of common results in all three studies.

6.1 Hypothesis 1
The error abstraction and classification approach improves the effectiveness (number of faults) and efficiency (faults per hour) of inspection teams and individual inspectors

For team effectiveness, all four studies showed that using the error abstraction and classification process was beneficial. In Studies 1 and 3, each team found a significant number of new faults during the reinspection in which they used the error abstraction and classification process (75% and 156% for teams in Study 1 and 81% and 84% for teams in Study 3). In Study 2 and 4, the subjects who used the error abstraction and classification process were significantly more effective during reinspection than those who just inspected the document two times. In terms of individual effectiveness, the results show a consistent benefit for all subjects. Each subject found a significant number of faults during the reinspection.

The results of all three studies showed that the error abstraction and classification process did not significantly hurt efficiency. This result is positive due to the extra steps required by the error abstraction and classification process. The students in Study 3 suggested that they might perform better if they were trained in the requirement error taxonomy before performing the error abstraction step. So, Study 4 has the subjects directly using the requirement error taxonomy to abstract errors and re-inspect rather than performing the actions in two separate steps as in these studies. This resulted in improved efficiency for subjects using the requirement error taxonomy.

Combining the results of effectiveness and efficiency, we can conclude that the error abstraction and classification process significantly improved the effectiveness while not hurting the efficiency of inspectors compared with the fault checklist and PBR inspection method. Because we now know that the error abstraction and classification process is effective, a future step is to investigate ways to significantly improve its efficiency. 

6.2 Hypothesis 2

The requirement error taxonomy is useful for helping inspectors find errors and faults

The data to evaluate this hypothesis came from subjective ratings by the subjects. In Study 1, the subjects evaluated the V1.0 of the error taxonomy using a 3-point scale whereas in Studies 2 3 and 4, they evaluated the V2.0 of the error taxonomy using a 5-point scale. 

Table 11 shows the ratings for the attributes across all three studies. Attributes that were significantly favorable have a double arrow ((), while those that were favorable, but not significant, have a single arrow ((). The results show that each attribute was rated significantly positive in at least one of the three studies and no attributes were rated negatively in any study.

Post-experiment interviews in Studies 1 and 3 and in-classroom discussion in Study 2 provided some additional insights into these results. It appeared, based on the discussion, that the error abstraction and classification process is easier when the inspectors participated in the development of the requirements. This hypothesis will be studied in the future. Second, subjects from all three studies agreed that using error information helped them better understand the real problems in the requirements document and that the effort spent during the error abstraction and classification process was extremely worthwhile. Finally, the subjects agreed that the errors in the requirement error taxonomy were a true representation of the mistakes that can occur during software development. They were in favor of the creation of similar error taxonomies for other lifecycle stages (i.e. architecture/design, coding).

6.3 Hypothesis 3

The requirement error taxonomy provides important insights into the major source(s) of requirement faults


One of the insights provided by the requirement error taxonomy was the relative contributions of three error types. In Studies 1, 3 and 4, there were significantly more people errors and significantly more faults related to people errors. Conversely, in Study 2, there were more people errors, but the documentation errors actually lead to significantly more faults. Our initial hypothesis to explain this difference was that participation in the development of the requirements affects the types of errors and faults identified during an inspection. In Studies 1 and 3 where people errors led to largest number of faults, the subjects participated in the development of the requirements. Conversely, in Study 2, where documentation errors led to largest number of faults, the subjects did not participate in the development of the requirements. 


However, the results from study 4 (i.e., subjects did not participate in development of the requirements but still found largest number of people errors) rejected this hypothesis. 

Furthermore, the result showed that across all the studies a significantly higher number of multiple faults (except for Team 3-B in Study 3), redundant faults, important faults and severe faults were the result of people errors. Further study of the fourteen detailed error classes showed that at least one error from each class was found by some subject(s) across the studies. This result provides confidence that the error classes in the requirement error taxonomy are valid and provide a good coverage of the requirement error space. Another insight was that no consistent pattern emerged regarding the types of faults that were caused by different error classes. The results do show that the people and process errors more often led to faults of ambiguity, and missing functionality. 
Finally, the insights from the participant observation in Study 3 showed that:

· The subjects in each team found some, but not all of the errors observed during development of the requirements;

· During the team meetings after the error abstraction and classification process the subjects found more errors and faults than during the meetings after the first inspection, using only the fault checklist; 

· The subjects better understood the requirement problems after becoming aware of the errors committed during development of the requirements document, and subsequently found more faults; and 

· The subjects followed the error abstraction and classification process closely and communicated well with other subjects during the inspection team meetings.

6.4 Hypothesis 4

The contributions from the human cognition and psychology fields help inspectors locate more faults

In all three studies, the subject teams found a large percentage of faults that were related to human cognition errors, i.e. in Study 1, 21% and 26% of the faults, in Study 2, 21% of the faults, in Study 3, 32% and 24% of the faults and in Study 4, 28% of the faults. Furthermore, most of the subjects in each of the three studies found errors and/or faults that were related to human cognition. Overall, these results support the validity of using human cognition research to better understand fault production and improve the effectiveness of software inspectors. Therefore, the integration of software engineering and cognitive psychology research helps provide a solution to the software quality problem.

6.5 Hypothesis 5

Other independent variables (process conformance, performance on a pre-test, usefulness of training, effort, and perceived difficulty) affect the individual performance during the error abstraction and classification process


The correlation between the independent variables and dependent variables differs across the three studies. The major conclusions about the impact of the independent variables on the performance of the inspectors are summarizes as follows:

· The ability to correctly classify example errors during a pre-test is a good predictor of fault detection effectiveness;

· Process conformance will help the subjects to find larger number of faults;

· Effective training on error abstraction and on the use of the requirement error taxonomy for reinspection is necessary for improving the fault detection effectiveness; and

· An increase in the effort spent during the error abstraction and classification process is likely to lead to an increase in fault effectiveness, but can also increase the fault efficiency.

6.6 Validity Threats

The first threat is that all three studies were conducted in a university setting. The subjects, undergraduate students in Studies 1 and 3 and graduate students in Study 2, are likely not representative of professionals. Therefore, the subjects were not professionals and the environment was not a real industrial setting. This threat was minimized in Studies 1 and 3 by having the students work with real clients to develop requirement documents that were later used to implement systems. Also, in Study 2 students inspected a real software requirement document developed by external software professionals. Based on these results, we will replicate these procedures in a professional development environment at Microsoft in future. This replication will help us determine whether the results in classroom studies hold in a professional environment. 
These results are summarized in Table 12 at the end of this section

7. Conclusion and Future Work


Based on the results from the three studies described in this paper, we conclude that addressing software quality by focusing on errors is more effective than focusing only on faults. We also conclude that Cognitive Psychology research provides a valuable contribution to software inspection methods. This research reports some useful insights into the cognitive processes employed by software engineers and where these processes are likely to fail. The results show that both the error abstraction and classification process and the requirement error taxonomy are beneficial to developers. We have identified some improvement areas in the requirement error taxonomy and the error abstraction and classification process based on feedback from the subjects. 

One major improvement area is to focus on the efficiency of using the requirement error taxonomy. This research investigated the use of the requirement error taxonomy in controlled settings. Our next immediate step is to evaluate the requirement error taxonomy in an industrial setting with professional software developers. Also, our future work is to develop more formal inspection techniques like Perspective Based Reading (PBR) techniques (Basili, 1996), based on the requirement error taxonomy. We also plan to perform additional empirical studies to understand the different kinds of errors that are made by developers with different backgrounds in software organizations.
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Figure 1.  Research approach
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Figure 2.  Requirement error taxonomy V2.0 (Walia, 2009)


 














Table 1 – Description of Requirement Error Classes (Walia, 2009)





Error Type�
Error Class�
Description�
�
People�
Communication�
Poor or missing communication among the various stakeholders�
�
People�
Participation�
Inadequate or missing participation of important stakeholders�
�
People�
Domain Knowledge�
Requirement authors lack knowledge or experience with problem domain�
�
People�
Specific Application Knowledge�
Requirement authors lack knowledge about specific aspects of the application�
�
People�
Process Execution�
Requirement authors make mistakes while executing requirement elicitation and development, regardless of the adequacy of the chosen process�
�
People�
Other Cognition�
Other errors resulting from the constraints on the cognitive abilities of the requirement authors�
�
Process�
Inadequate Method of Achieving Goals and Objectives�
Selecting inadequate or incorrect methods, techniques, approaches to achieve a given goal or objective�
�
Process�
Management�
Inadequate or poor management processes�
�
Process�
Elicitation�
Inadequate requirements elicitation process�
�
Process�
Analysis�
Inadequate requirements analysis process�
�
Process�
Traceability�
Inadequate or incomplete requirements traceability�
�
Documentation�
Organization�
Problems while organizing requirements during documentation�
�
Documentation�
No Usage of Standard�
Problems resulting from the lack of using a documentation standard�
�
Documentation�
Specification�
General documentation errors, regardless of whether requirement author correctly understood the requirements�
�
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Figure 3.  The order of three experiments to evaluate the requirement error taxonomy.


 





Table 2 – Study Hypotheses





Hypothesis #1�
The error abstraction and classification approach improves the effectiveness (number of faults) and efficiency (faults per hour) of inspection teams and individual inspectors.�
�
Hypothesis #2�
The requirement error taxonomy is useful for helping inspectors find errors and faults.�
�
Hypothesis #3�
The requirement error taxonomy provides important insights into the major source(s) of requirement faults.�
�
Hypothesis #4�
The contributions from the cognitive psychology field help inspectors locate more faults.�
�
Hypothesis #5�
Other independent variables (process conformance, performance on a pre-test, usefulness of training, effort and perceived difficulty) affect the individual performance during the error abstraction and classification process.�
�






Table 3 – Independent and Dependent Variables





Independent Variable�
Definition�
�
Process conformance�
Measures how closely subjects follow the error abstraction, classification and re-inspection steps�
�
Pre-test�
Measures the performance of subjects on using the requirement error taxonomy during an in-class exercise�
�
Training usefulness�
Measures the perceived usefulness of training procedure for each subject�
�



Effort spent�
Amount of time spent during each step of error abstraction and classification process (i.e., error abstraction, error classification, and re-inspection)�
�
Difficulty level�
Measures the degree of difficulty the students perceived while performing the experimental tasks�
�
Dependent


Variable�
Definition�
�
Effectiveness�
The number of faults found�
�
Efficiency�
The number of faults found per hour�
�












Table 4 – Details of Steps Performed and Output Produced by Experiment Group and Control Group in Study 2  





�
Control Group�
Experiment Group�
�
Training 1 – Fault Checklist�
Trained on how to use fault checklist to find faults�
�
Step 1  - Requirements Inspection�
Each subject inspected the requirements to identify faults.


Output – Individual Fault Lists�
�
Training 2 – Motivation / Error Abstraction�
Motivation – subjects were informed that faults remained in the document and were encouraged to find additional faults.�
Error Abstraction – subjects were trained on how to abstract errors from faults.�
�
Step 2 – Abstraction of Errors�
N/A�
Each subject abstracted errors from their own fault list from Step 1. 


Output – Individual Error-Fault Lists�
�
Training 3 – Requirement Error Taxonomy�
N/A�
The taxonomy was explained in detail. Subjects were taught how to classify errors. They were given an in-class error classification exercise. The exercise was debriefed to ensure the students understood the classification process. Finally, the subjects were taught how to use the classified errors to guide re-inspection.�
�
Step 3 – Classify Errors�
N/A�
Subjects classified the errors they identified during Step 2. 


Output – Individual Error-Fault Lists�
�
Step 4 – Re-inspection�
(Labeled as Step 2) Using the fault checklist from Step 1, each subject re-inspected the requirements.�
Each subject used their own classified errors from Step 3 to re-inspect the requirements.


Output – Individual New Fault Lists�
�
Post-study Survey�
Focused on the use of the checklist and the quality of the requirements�
Focused on gathering feedback about the error abstraction and classification process�
�
In-Class Discussion�
In-class discussion held with all subjects to gather additional feedback�
�
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Figure 4.  Experiment Design for Study 2 and Study 4
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Figure 5.  Comparison of the average number of faults found by experiment and control group at first inspection, and second inspection in Study 2 and Study 4.








Table  5-  Insights Provided by the Requirement Error Taxonomy





Variable�
Study #�
People Error�
Process Error�
Documentation Error�
p-value�
�
Total


Errors�
Study 2�
41%�
25%�
34%�
0.052�
�
�
Study 4�
51%�
24%�
25%�
<0.001�
�
Total


Faults�
Study 2�
35%�
19%�
46%�
0.002�
�
�
Study 4�
55%�
25%�
20%�
<0.001�
�
Redundant


Faults�
Study 2�
52%�
18%�
30%�
0.004�
�
�
Study 4�
49%�
22%�
29%�
0.005�
�
Time-consuming Faults�
Study 2�
60%�
13%�
27%�
0.004�
�
�
Study 4�
51%�
17%�
32%�
0.002�
�
Multiple


Faults�
Study 2�
44%�
30%�
26%�
0.002�
�
�
Study 4�
57%�
24%�
19%�
<0.001�
�
Important


Faults�
Study 2�
62%�
22%�
16%�
<0.001�
�
�
Study 4�
55%�
33%�
12%�
<0.001�
�
Severe


Faults�
Study 2�
53%�
28%�
19%�
<0.001�
�
�
Study 4�
56%�
32%�
12%�
<0.001�
�
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Figure 6.  Contribution of cognitive psychology research to total error and faults found by 8 experiment subjects in Study 2 and 21 experiment subjects in Study 4.





Table 6 – Effect of Independent Variables on Subject’s Effectiveness   





Variable�
Description�
r2�
p-value�
�
Process Conformance�
Subjects rated themselves from 1-5 for Error Abstraction, Error Classification, and Re-inspection (Steps 2-4). The median value was significantly correlated to effectiveness during re-inspection.�
.528�
.041�
�
Pre-test�
During Training 3, the subjects classified a set of example errors. The number of correctly classified errors was significantly correlated to effectiveness during re-inspection.�
.601�
.024�
�
Effort Expended�
Effort was the sum of the effort expended during Error Abstraction, Error Classification and Re-inspection. Effort showed a significant positive correlation to effectiveness during re-inspection�
.484�
.044�
�









Table 7 – Study 1/ Study 3: Teams, Subjects, and System Description





Study #�
Semester�
Team #�
Number of Subjects�
System�
�
1�
Fall 2005�
1-A�
8�
Starkville theatre system�
�
�
�
1-B�
8�
Apartment Management�
�
3�
Fall 2006�
3-A�
6�
Conference 


Management�
�
�
�
3-B�
6�
�
�









Table 8 – Differences between Study 1/Study 3 and Study 2





Changes from Study 2 �
�
Unlike Study 2, the subjects had team meetings after the first inspection, the error classification and the re-inspection to consolidate the individual fault or error lists into a team list�
�
The feedback questionnaire was similar for all 3 studies except that in Study 1, a 3-point Likert scale was used instead of a 5-point scale.�
�
Study 1 was a feasibility study, so it used V1.0 of the taxonomy. Studies 2 and 3 used V2.0 of the taxonomy�
�
No in-class discussion was held at the conclusion of the study. However, the team leaders were interviewed to gather feedback.�
�
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 Figure 7 Study operation for Study 1 is shown in solid lines and the additional observational aspect in Study 3 is shown in dotted lines.
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Figure 8.  Percentage increase in the number of faults found by different teams 





Table 9 – Contribution of Error Types to Overall Errors and Faults





Variable�
Team�
People Errors�
Process 


Errors�
Document Errors�
p-value�
�



Total


Errors�
1-A�
52%�
32%�
16%�
<0.001�
�
�
3-A�
50%�
30%�
30%�
0.001�
�
�
1-B�
59%�
24%�
17%�
<0.000�
�
�
3-B�
38%�
35%�
27%�
0.379�
�



Total


Faults�
1-A�
50%�
33%�
8%�
<0.001�
�
�
3-A�
57%�
27%�
16%�
<0.001�
�
�
1-B�
78%�
9%�
13%�
<0.000�
�
�
3-B�
47%�
19%�
34%�
0.003�
�












Table 10 – Additional Insights Provided by Requirement Error Taxonomy





Variable�
Team�
People


Errors�
Process


Errors�
Doc.


Errors�
p-value�
�



Redundant faults�
1-A�
64%�
29%�
7%�
< 0.001�
�
�
1-B�
64%�
23%�
14%�
< 0.001�
�
�
3-A�
63%�
21%�
16%�
< 0.000�
�
�
3-B�
49%�
17%�
34%�
< 0.000�
�



Time consuming faults�
1-A�
38%�
62%�
0%�
< 0.016�
�
�
1-B�
25%�
58%�
17%�
< 0.001�
�
�
3-A�
24%�
68%�
8%�
< 0.000�
�
�
3-B�
31%�
54%�
15%�
< 0.000�
�



Multiple faults�
1-A�
80%�
20%�
0%�
< 0.001�
�
�
1-B�
60%�
36%�
4%�
< 0.001�
�
�
3-A�
47%�
15%�
38%�
< 0.000�
�
�
3-B�
38%�
11%�
51%�
< 0.000�
�
Important faults�
3-A�
65%�
21%�
14%�
< 0.000�
�
�
3-B�
52%�
39%�
9%�
< 0.000�
�
Severe faults�
3-A�
71%�
29%�
0%�
< 0.000�
�
�
3-B�
58%�
37%�
5%�
< 0.000�
�
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Figure 9.  Contribution of cognitive psychology research to overall error and faults found by each subject in Teams 1-A, 1-B, 3-A, and 3-B.





Table 11- Insights Provided by the Requirement Error Taxonomy





Attributes�
Study 1�
Study 2�
Study 3�
Study 4�
�
Simplicity�
�
�
�
�
�
Usability�
�
�
�
�
�
Orthogonal�
�
�
�
�
�
Usefulness�
�
�
�
�
�
Understandability�
�
�
�
�
�
Intuitiveness�
�
�
�
�
�
Comprehensive�
�
�
�
�
�
Uniformity across products�
�
�
�
�
�
Adequacy of error classes�
�
�
�
�
�
Ease of classifying errors�
�
�
�
�
�









Table 12- Summary of Results from Three Studies Built Around Five Hypotheses





Hypothesis�
�
�
�
Results from all the Four Studies�
�



H 1�
The students using error abstraction and classification were significantly more effective during re inspection as well as overall, with no significant differences in their overall efficiencies. �
�



H 2�
The requirement error taxonomy was significantly favorable relative to  usefulness, understandability, comprehensiveness, ease of classifying errors,  uniformity across different products, and containing adequate requirement error classes�
�
H 3�
People errors also led to a significantly larger percentage of redundant faults, time-consuming faults, multiple faults, important faults, and severe faults.�
�
H 4�
The experiment groups found an average of one-fourth of  the total faults that were caused by the cognitive psychology errors.�
�
H5�
Pre-test, overall process conformance, and the overall effort spent led to the detection of significantly more faults during second inspection�
�
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